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Abstract—Signal-based anomaly detection is a recurring prob-
lem that has drawn the attention of many research projects and
resulted in the development of multiple solutions. One of the main
obstacles to anomaly detection is the rarity of the occurrences of
interest. Extremely small amount of labelled data is troublesome
from the training perspective since it has a detrimental influence
on the accuracy of predictions. The second challenge is providing
a clear and understandable model. Answering this second issue
is particularly important for a variety of industries since it is
beneficial to understand what causes outliers in order to avoid
them in the future. To address the aforementioned concerns, we
propose a novel self-supervised framework named SGraphZoe
which outperforms linear semi-supervised state-of-the-art outlier
detection algorithms while maintaining transparency throughout
training and prediction steps. This framework is built on a
Self-supervised strategy and combines a semi-supervised (Graph
Diffusion & PCA) and a supervised (Zoetrope Genetic Program-
ming) algorithms.

I. INTRODUCTION

The detection of anomalies in signals represented by uni-
variate time series data can be challenging. The analysis of the
recording of a sensor in a factory perfectly illustrates this type
of problem. Indeed, several types of anomalies [1] can occur:

• Process anomalies are unexpected events and failures
impacting a process in the plant;

• Anomalies of change of pace are different operations
of a machine from one day to the next one;

• Anomalies of data are issues in the data collection and
storage system that generate erroneous data and time
series.

We must emphasize that the problems with anomaly detection
stem not only from the fact that different types of anomalies
have different detection patterns but also from the challenges
in the rarity of their occurrences (i.e., extremely small amount
of labelled data) which is troublesome from the supervised
training. Nowadays, it already exists linear state-of-the-art
(SOTA) algorithms for the unsupervised outlier, and novelty
detection, such as Isolation Forest (IForest) [2] and Local

Outlier Factor (LOF) [3] respectively. Even more, there exist
semi-supervised1 linear algorithms such as Label Propagation
(LP) [4] which support self-supervised training strategy [5].
However, all of them do not show transparent and explainable
training and prediction steps which is an important demand
from industrial companies. Indeed, it is beneficial to under-
stand what causes outliers in order to be able to avoid them
in the future. Therefore, in this work we concentrated on the
development of a framework which allows us to detect any
anomalies and explain their likely causes (e.g. server or switch
malfunction, Distributed Control System (DCS) issues, sensor
failure) and possible sources (e.g. problems derived from
physical limits, problems in the data storage system) of their
appearance in signals despite of the missing labelled data. We
thus developed a novel framework called SGraphZoe which
is based on a Self-supervised strategy and the combination of
two algorithms: Graph Diffusion & PCA (GDPCA) [6] and
Zoetrope Genetic Programming (ZGP) [7].

II. NOTATIONS AND FRAMEWORK DEFINITION

A. Notations

Let X = [Xi]
n
i=1, where Xi = (Xi,j)

d
j=1, be the matrix

of observed time series, with length of time series d and total
number of observations n. Then let {C1, C2} be the set of two
classes. In our case, C1 is non-anomalys and C2 is anomaly.
Also, let Y = [Yi]

n
i=1 be a label matrix where Yi = (Yi,j)

2
j=1,

such that Yi,1 = 1 if Xi ∈ C1 and Yi,1 = 0 otherwise. Note that
the original Y is contained a labelled observations of size nl,
and an unlabelled one of size nu, for semi-supervised learning
nl ≪ nu and Yi being the zeros vector in the case of all
unlabeled data. Also, we define the graph-based setup which
will be useful further for understanding GDPCA algorithm:
A = [Ai,j ]

n,n
i,j=1 is an adjacency matrix which could be

replaced by a similarity matrix W = [h(Xi, Xj)]
n
i,j=1 ∈ Rn×n

where h(·, ·) is a positive definite kernel, D = diag(Di,i) is a
diagonal matrix with Di,i =

∑n
j=1 Ai,j .

Lastly, we should mention that our framework was inspired
by semi-supervised PaZoe [8] framework, which performed
well for general time series classification problems.

1Extremely low amount of labels.979-8-3503-3959-8/23/$31.00 © 2023 European Union



Fig. 1. SGraphZoe sequence: 1) Semi-supervised training by GDPCA; 2) Supervised training by ZGP: Augmentation X with GDPCA inferences; ZGP training;
3) Reassessment by computing distance Cosine(µ1, µ2); 4) Final interpretable classification formula from ZGP.

Fig. 2. Example of zoetrope which could be generated from the input features
(Xi,j)

d
j=1.

INPUT: X , Y , τ ;
INITIALIZE: γ = ∞, Y
for t = 0 to τ do
Ŷ = GDPCA(X,Y ) #Self-labelling;
Y = ZGP (X, Ŷ ) #Supervised training;
C1 = {i|Yi,1 > Yi,2}, C2 = {i|Yi,2 > Yi,1}

µ1 ≈
∑

i∈C1
Xi

|C1| ;µ2 ≈
∑

i∈C2
Xi

|C2| ;

γ̃ = Cos(µ1, µ2) #Label reassessment;
if γ̃ < γ then
γ = γ̃, Ỹ = Y

end if
end for

Algorithm 1: SGraphZoe

B. SGraphZoe framework

This study is built on the central concept that all data can be
represented by a graph, which can then be utilized to improve
default features as well as for transparent label diffusion.
Because of the aforementioned concepts, SGraphZoe employs
the most recent best linear graph/non-graph-based algorithm as
GDPCA for the semi-supervised step, which explicitly makes
a label spreading through the generated graph for labelling of
unlabeled data for further training of the ZGP algorithm in
the supervised regime. The detailed process of SGraphZoe is
illustrated in Figure 1 and in Algorithm 1 wher e τ is the total

numer of iterations and γ is the distance between approximated
expectations defined further in Assumption 1. It consists in the
following steps:

1) Semi-supervised learning using GDPCA: GDPCA is
the latest SOTA linear graph-based semi-supervised
learning framework [6]. Using GDPCA is interesting
since it is suitable for both graph-based and non-
graph-based data and is able to train on an extremely
small amount of labelled data. This semi-supervised
training regime of GDPCA, in particular, enables the
labelling of unlabelled data for future training under a
supervised regime. In SGraphZoe we utilize GDPCA
to enrich the original label matrix Y for further
training. The explicit classification step of GDPCA
is:
Ŷ = α

(
Dσ−1AD−σ + δSD−2σ+1

)
+ (1 − α)Y ,

where δ ∈ (0, 1) sets the influence of estimated
covariance between signals S ∈ Rn×n on A and
α ∈ (0, 1) is the jump parameter of PageRank [9].
Thus, GDPCA allows visualizing labels spreading
through the graph;

2) Supervised learning using ZGP: ZGP is a genetic pro-
gramming approach for symbolic regression (GPSR)
in which mathematical equations (which can be
reprenseted by trees such as in Figure 2) are evolved
through several iterations using genetic operators (i.e.
crossover and mutation). The final model corresponds
to the tree that best fits the training data, according
to a fitness function. ZGP is unique in the way the
mathematical formulas are built, allowing an efficient
calculation and preventing models from overgrowing,
a major problem in GPSR [10]. More precisely, these
equations are built from a number me of randomly
chosen features and constants (E1, . . . , Eme

) on
which several ”fusions” are applied through ”matura-
tion steps”. The ”mature” equations finally obtained,
called “zoetropes” (Z1, . . . , Zme

) (see Figure 2), are
linearly combined by multinomial logistic regression
penalized by Elastic net [11]. Thanks to this zoetrope



TABLE I. PERFORMANCE COMPARISON (Macro− F1)

Dataset SGraphZoe (LR20%) SGraphZoe (LR10%) IForest LOF LP (LR20%) LP-self (LR20%) PaZoe(LR20%)

Wafer 0.878 0.709 0.749 0.542 0.949 0.949 0.630
ECGFiveDays 0.657 0.530 0.460 0.338 0.607 0.608 0.646
ToeSegmentation2 0.548 0.516 0.155 0.155 0.449 0.449 0.524
TwoLedECG 0.564 0.528 0.497 0.352 0.559 0.562 0.545

TABLE II. DATASET STATISTICS

Dataset Type AR d n LR20% LR10%

Wafer Sensor 0.11 152 7164 19 9
ECGFiveDays Sensor 0.20 136 8842 2 1
ToeSegmentation2 Motion 0.25 343 166 3 1
TwoLedECG Sensor 0.49 82 1162 2 1

mechanism, ZGP is able to provide interpretable
classification formulas for each class (an example of
a formula is presented in Equation (1)). Here ZGP
is trained on X and Y previously augmented by
inferences from GDPCA;

Yi,2 = 0.5∗Xi,1−0.1∗Xi,15+0.2∗Xi,2∀Xi ∈ X (1)

3) Label Reassessment: finally, GDPCA is retrained by
using the predictions made by ZGP in the previous
step such that the entire framework uses a self-
supervised training loop. To understand how to ex-
tract the best predictions from this self-supervised
training loop, the following assumption is made:
Assumption 1: Let assume that the time series ma-
trix of observations X is sampled from the Gaussian
distribution:

X1, . . . , Xn
2
∼ N (µ1, C)

and Xn
2 +1, . . . , Xn ∼ N (µ2, C),

where µ1, µ2 are the expectations for the two classes
with Cos(µ1, µ2) > 0 where Cos(·, ·) is the cosine
distance and C is the covariance matrix of classes.
Assumption 1 shows that the time series are generated
from Gaussian distribution with different expectations
(expectation of outlier and non-outlier). Then, based
on the Assumption 1, an unsupervised reassessment
of predictions is performed within the self-supervised
framework by computing the cosine distance between
approximated µ1 and µ2. If this distance is lower than
the current γ (initialized to infinity at the begining
of the algorithm), then it becomes the new optimal
γ. In particular, this reassessment ensures returning
the best optimal prediction over all iterations (τ ),
which corresponds to the maximum distance between
approximated µ1 and µ2 ever encountered through the
Algorithm 1.

III. EXPERIMENTS

A. Datasets

In the experimental part of this work, we considered three
sensor datasets and one motion dataset, which are publicly
available2:

2https://www.timeseriesclassification.com/index.php

• Wafer [12] is a collection of inline process control
measures acquired from various sensors during the
processing of silicon wafers for semiconductor manu-
facture;

• TwoLeadECG is an ECG dataset from MIT-BIH Long-
Term ECG Database (ltdb) Record ltdb/15814, begin-
ing at time 420, ending at 1019;

• ECGFiveDays is an ECG dataset: 12/11/1990 ECG
date: 17/11/1990;

• ToeSegmentation is derived from the CMU Graphics
Lab Motion Capture Database (CMU) where motions
are classified by their motion descriptions into the
normal walk and abnormal walk (e.g. hobble walk).

The statistics for the aforementioned datasets are presented in
Table II where AR is the anomaly ratio and LR20% = |C2| ∗
0.2, LR10% = |C2|∗0.1 are the label ratio that fix the number
of labelled nodes required for semi-supervised training from
each class. In addition, for all of the aforementioned datasets,
we used the following training/testing strategy: at first, we
merged training and test observations available by default for
aforementioned datasets into one dataset; we took 20%or10%
labelled observations for each class and trained on the merged
dataset, with a final estimation of performance based solely
on test observations. This strategy of combining the training
and testing observations for the model training provides for
a fair comparison of unsupervised, semi-supervised, and self-
semi-supervised models, as all of them may use all available
unlabeled data throughout the training process.

B. State-of-the-art (SOTA) algorithms

In order to compare the performance of SGraphZoe with
SOTA algorithms, we took several types of linear algorithms:
unsupervised outlier detection such as IForest [2] and LOF
[3]; semi-supervised ones such as LP [4] and PaZoe [8] and
a self-semi-supervised one named LP-self. Note that LP-self
is a combination of SelfTrainingClassifier3 [13] and LP [4].
For a fair comparison, we have trained the aforementioned
algorithms with respect to their best hyperparameters defined
in their respective works. In particular, for GDPCA and
ZGP algorithms applied inside of SGraphZoe, we selected
the default hyperparameters from [6] and [7], respectively.
We defined the number of iterations τ = 10. We utilize
Macro−F1 (2) score for assessment since all of the datasets
are imbalanced.

Macro− F1 = 2 ∗ MacroPrecision ∗MacroRecall

MacroPrecision+MacroRecall
(2)

3https://scikit-learn.org/stable/modules/generated/
sklearn.semi supervised.SelfTrainingClassifier.html



C. Results

The results of SGraphZoe on various datasets are presented
in Table I. It shows that SGraphZoe outperforms the linear
unsupervised, semi-supervised and self-semi-supervised SOTA
algorithms in almost all of the datasets. Even more, we
could note that with a reduction of LR (from 20% to 10%),
SGraphZoe performs closely to an unsupervised regime and
still provides competitive performance. Finally, we should
note that SGraphZoe not only shows high performance but
also provides transparent and explainable predictions through
final classification formulas extracted from ZGP. Moreover,
SGraphZoe benefits of a transparent training process since it
uses the label diffusion through the graph mechanism from
GDPCA in combination with ZGP zoetropes.

IV. CONCLUSION

In this paper, we demonstrated how, in SGraphZoe frame-
work, the critical issue of a lack of labeled observations in
the case of anomaly detection in signals, could be managed
by labels diffusion through the generated graph (GDPCA) in
conjunction with ZGP algorithm under self-supervised itera-
tions. Moreover, SGraphZoe provides more interpretable clas-
sification formulas for each class (e.g. Equation (1)) compared
to the other SOTA algorithms and shows high performance on
various types of datasets (see Table I).

In future work, we want to assess SGraphZoe’s perfor-
mance on a broader range of datasets (e.g., pictures, networks)
and adapt it to a fully unsupervised environment.
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[10] J. Žegklitz and P. Pošı́k, “Symbolic regression algorithms with built-in
linear regression,” arXiv preprint arXiv:1701.03641, 2017.

[11] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[12] R. T. Olszewski, Generalized feature extraction for structural pattern
recognition in time-series data. Carnegie Mellon University, 2001.

[13] D. Yarowsky, “Unsupervised word sense disambiguation rivaling su-
pervised methods,” in 33rd annual meeting of the association for
computational linguistics, 1995, pp. 189–196.


