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Abstract - This research describes a unique method for 

identifying and categorizing solar panel problems using RGB and 

thermal pictures captured by drones. The first step of the 

suggested technique is to identify solar panels in the photographs 

by using a CNN based on YOLOv5 architecture model that was 

trained and tested on an annotated dataset of solar panels. A 

number of computer vision techniques were used to separate the 

panels from their backgrounds in order to get around the 

accuracy issues with the detector. The panels were then classified 

as normal or anomalous using a state-of-the-art EfficientNet 

classifier, which was trained on a synthetic dataset. The 

anomalies were then divided into four categories: cell, multi-cell, 

diode, and multi-diode. The results obtained from this research 

demonstrate the viability and potential of employing drones to 

identify and categorize solar panel problems and emphasize the 

significance of creating precise models to enhance solar park 

management. 
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I. INTRODUCTION 

As a viable replacement for fossil fuels, solar energy has 
attracted a lot of interest in recent years. It is a renewable and 
sustainable energy source. Nevertheless, several defects, such 
as cells, diodes, or multiple cells and multiple diodes, might 
have an impact on the effectiveness and performance of solar 
panels. The generation of energy can be significantly reduced 
by these flaws, thus it's critical to identify and categorize them 
as soon as feasible. 

The traditional technique of evaluating solar panels 
involves personnel visiting the solar park and visually 
inspecting each panel. This method is time-consuming and 
leads to errors many times. Because of improvements in deep 
learning and computer vision technology, automation of this 
process is now feasible, which will make it quicker, more 
effective, and less expensive. 

The use of drones and computer vision techniques to 
identify and categorize solar panel defects has been suggested 
in several papers. To detect damaged photovoltaic cells with a 
high detection rate, [1] suggests a deep learning-based strategy 
utilizing VGG-16. A completely automated drone and cloud- 
based infrared monitoring system for sizable photovoltaic 

 
plants is presented in [2]. The technology has a high rate of 
accuracy in identifying solar panel flaws including hotspots 
and fractures. In [3], the author discusses a real-time fault 
detection system for solar cells that uses cameras placed on 
drones and reports that the system can detect hotspots and 
cracks. 

To find abnormal areas in thermal pictures taken by drones, 
[4] combines image segmentation and clustering methods. 
Moreover, they employ an unsupervised machine learning 
method to categorize the discovered abnormalities 
automatically. Real-world photovoltaic plant's data is used in 
[5] to compare and assess the performance of various fault 
detection methods for photovoltaic systems. This study 
demonstrates that modern techniques, particularly those 
utilizing deep learning and drone technology, are faster and 
more accurate than older ones. 

Reference [6] suggests a monitoring system for solar plants. 
The technology has been tested on a real-world solar plant with 
a high accuracy rate and employs machine learning techniques 
to detect and categorize errors in real-time. Lastly, [7] suggests 
a way for advanced inspection of solar systems utilizing these 
techniques. The technique can accurately identify flaws in solar 
panels such as hotspots, fractures, and damaged cells. In this 
paper, we propose a novel approach for detecting and 
classifying faults in solar panels using drone acquired RGB and 
thermal images. Our approach utilizes YOLOv5 and 
EfficientNet to detect and classify solar panel faults and aims 
to overcome the limitations of existing methods using 
computer vision techniques. 

 

 
II. METHODOLOGY 

The methodology section of this paper describes the steps 
taken to detect and classify faults in solar panels using drone 
acquired RGB and thermal images. The proposed method 
consists of four main stages: panel detection using CNN based 
on YOLOv5 architecture, image preprocessing using computer 
vision techniques, panel classification using an EfficientNet 
classifier, and thermal statistics analysis using machine 
learning. In the following sub-sections, each stage will be 
explained in more detail, including the specific techniques 



used, the datasets and the evaluation metrics used to evaluate 
the performance of the proposed method. 

 
Fig 1: Workflow pipeline 

 
A. Panels detection 

The detector used for the initial panel detection was a deep 
convolutional neural network based on Yolo architecture to 
determine the bounding box of each panel. At first, we had to 
collect images containing panels from solar parks. We used a 
drone equipped with Autel camera to get colored images and 
the corresponding thermal. The flight was made by setting the 
necessary specifications. Over 200 drone images were 
collected containing over 300 single panels. 

For object detection tasks we need to annotate the images 
before we fit them for training. So, we manually created 
rectangles around every single panel in our images and we 
extracted the corresponding txt file by using CVCAT website. 
The TXT file contains all the necessary information for our 
object detector to get trained. It contains the exact location of 
the detected panel rectangles. 

The training was done over our own annotated dataset for 
images with size 640 for 80 epochs with batch size 8. We also 
added random rotations to images before we feed them for 
training so that our detector can handle images with small 
rotations in case the user does not follow the flight instructions 
accurately. 

 

 
Fig. 2: Detector’s results 

Figure 2 presents the result of our detector in a new image 
with the bounding boxes over every panel detected and the 
probability about how certain our model is that in this place 
there is a panel. As anyone can notice, our detector managed to 
detect all the panels in the test image, even the ones from the 
background with high accuracy and the probability is about 
90%. 

B. Image preprocessing 

The main goal is to classify the panels into faulty or not 
faulty classes. So, after detecting the location of every single 
panel in the input image and creating a separate image for each 
one, we have to feed them to the classifier. However, if we feed 
the panel images in this way, we will not be able to achieve 
high accuracy because every image contains unnecessary 
information of the background and not only the interior of the 
panel. 

To isolate the interior of the panel in panel images we 
implemented another convolutional neural network model 
based on Unet architecture. The main idea behind this 
architecture is called decoder-encoder where the decoder 
decomposes the image into basic features and the encoder uses 
them to construct the mask image. 

To train this model, we first had to prepare the training 
dataset. The dataset consists of images similar to those given as 
a result by our detector and the corresponding mask image. The 
mask image is an image with same dimensions as the panel 
image which is completely black besides the area that 
represents the panel. Our model has in total 1.941.139 trainable 
parameters and is trained for 75 epochs over 1062 images for 
training, 304 images for validation and 151 images for testing 
with size (128, 128). With this method over eighty five percent 
of pixels are classified correctly. Figure 3 shows the 
implementation of the segmentation model. 

 

 

Fig. 3: Panel segmentation 

After taking the forecast from our model, we have to cut the 
mask image exactly where the color is white. At first, we apply 
the canny method from OpenCV library to detect the edges of 
the mask image and then the findContours method to check if 
we correctly detected a shape with 4 edges in order to cut the 
image and save it as a new image. With this method we 
manage to keep the interior of the panels in 87% of our test 
images. 

To raise the accuracy of keeping the interior of the panels 
and hold only the area of our interest, we implemented a 
computer vision method when the decoder-encoder model fails. 
As we can see in the figure 4, the process is the same, but we 
added some more steps. After applying the canny method to 
our mask image, we use the HoughLinesP method from 
OpenCV library to detect straight lines in the canny image. 
The next step is to extend these lines in order to get close 
shapes because the previous method might have some spaces 
in the detected lines. The last step again is the findContours 
method combined with warpPerpective in order to adjust the 
four edges of the close shape we detected in extended line 
image into our final image with standard dimensions. 



 

 

Fig. 4: A:Original image, B:Mask Image, C:Canny Image, D:Line Image, 
E:Extended Lines, F:Contours Image, G:Final Image 

 
 
 

C. Panel classification 

To classify every panel of the user’s solar park into fault or 
no-fault categories, our first approach included training on 
several online datasets of solar panel faults, but the results 
couldn’t be applied to real data. So, we decided to create a 
synthetic dataset by using panel images with no faults and we 
add random anomalies. In total as we can see in figure 5, four 
different fault classes were created, Cell, Diode, multi-cell and 
multi-diode. 

 

Fig. 5: A:Cell, B:Diode, C:Multi-Cell, D:Multi-Diode 

The final dataset contains 5000 images for training, 1000 
for each synthetic class and 1000 for panels without anomaly 
(no-anomaly class), 1500 images for validation and 500 images 
to test the results. The shape of the images is 300x300x3 which 
represents a squared colored image with length of 300 for each 
side. 

After testing many different architectures (figure 6) and 
exploring a lot of parameter values, we ended up with 
EfficientNet classifier which is proposed by Google. The 
training is done for 25 epochs and small augmentation methods 
applied when feeding the data images to make the model more 
generic and has higher accuracy on distorted images. 

 

 

Fig. 6: Comparison of Classifiers 

The classifier manages to predict the class of the panels 
with 95% accuracy. So, we are now able to make predictions 
for every single panel of the user’s solar park with high 
accuracy and provide information about the anomaly for each 
one. In figure 7 we can see a thermal image of a panel as well 
as the areas the model uses to make the prediction. Areas with 
color near red are more important for the final decision than 
areas with color near blue. 

 

Fig. 7: A:Thermal Image, B:Heatmap 

 
D. Thermal analysis 

In addition to the classifier, the deep learning hub also 
analyzes the thermal data for every panel image by calculating 
the statistics. The statistics we are taking into consideration for 
this task are maximum, minimum, mean, median value in 
panels thermal list, kurtosis, standard deviation and skewness 
distributions of the list. This is used to identify offline panels 
that can’t be detected from the classifier and to confirm the 
classifier’s predictions. In figure 8 we can see the difference 
between the histogram of a panel without faults in the left and a 
panel with multi diode anomaly on the right. It is worth noting 
the great variety of the standard deviation values in these two 
cases. By finding the down outliers of the mean value in all 
panels detected in the solar park, we can detect offline panels. 

 

 
Fig. 8: A:Panel without faults, B:No fault panel Histogram Std = 0.82, 

C:Multi-Diode anomaly panel, D:Multi-Diode panel Histogram Std = 2.42 

This data can be also used to classify the panel as faulty or 
no faulty. We may not be able to make predictions about the 
type of anomaly for every panel like the classification model 
but for instance, if the minimum value of a panel is too low that 
may be a sign of a fault. For this purpose, a machine learning 
model was implemented. 



Our dataset for this task consists of 1146 rows that 
represent the statistics of the panels labeled as faulty or no 
faulty. Unfortunately, only 24 of them represent faulty panels. 
So, at first, we created more faulty data by using the smote 
method and we split dataset into training and testing, 30% of 
data for testing. 

Many machine learning models were trained, and we 
compared them. We also implemented feature selection and 
PCA methods but none of those had a great impact on 
accuracy. Then we tried scaling methods and visualized all the 
results. The best model we came up with is random forest 
which achieves 95.7% accuracy with “criterion” parameter 
with value of gini, “max_depth” of 10 and “n_estimators” of 
80 without feature selection or data scaling. 

 
III. RESULTS 

This paper proposes a methodology for identifying and 
categorizing solar panel problems using RGB and thermal 
pictures taken by drones. The approach is divided into four 
basic steps: panel identification using a CNN based on 
YOLOv5 architecture, image preprocessing using computer 
vision methods, panel classification using an EfficientNet 
classifier, and thermal statistics analysis using machine 
learning. 

A deep convolutional neural network based on YOLOv5 
architecture, is used in the first step to identify the bounding 
box of each panel in the photos. Rectangles were manually 
drawn around each panel in the images, and training was 
carried out using random rotations across the annotated dataset 
to handle slight image rotations. The accuracy of the detector 
was evaluated using a test image, where it successfully 
detected all the panels in the image with a probability of 90%. 

The inside of the panels in panel pictures are isolated using 
a convolutional neural network model based on Unet 
architecture in the second step. The model's decoder-encoder 
architecture breaks the picture down into its constituent parts, 
which the encoder then utilizes to create the mask image. The 
findContours technique is used to see if a form with four edges 
is appropriately recognized to cut the picture and save it as a 
new image after the mask image has been processed to detect 
its edges using the canny method. When this method's accuracy 
is tested, 87% of the test images successfully maintain the 
inside of the panels. 

The third stage is classifying each solar panel in the user's 
solar park into groups with or without faults. Using panel 
pictures without any defects and a synthetic dataset, four 
separate fault classes are created: Cell, Diode, and Multi-Cell. 
After examining several architectures and parameter values, 
the EfficientNet classifier is utilized. In order to broaden the 
model's applicability and improve its performance on distorted 
photos, the classifier is trained for 25 epochs with minor 
augmentation techniques employed while feeding the data 
images. 

In order to find any defects not found in the other steps, the 
last stage uses machine learning to examine the thermal data of 
the panels. Overall, the suggested approach has the ability to 

accurately identify and categorize solar panel problems 
utilizing RGB and thermal pictures taken by a drone. 

 
IV. CONCLUSIONS 

In this research, we presented an approach for identifying 
and categorizing solar panel problems utilizing drones that can 
take RGB and thermal photos. The suggested method is 
divided into four primary stages: thermal statistics analysis 
using machine learning, panel identification using CNN based 
on YOLOv5 architecture, panel classification using an 
EfficientNet classifier, and picture preparation using computer 
vision techniques. 

A deep convolutional neural network based on YOLOv5 is 
used in the panel detection step to identify each panel in the 
input picture. The image preprocessing stage isolates the 
interior of the panel in panel images using a convolutional 
neural network model based on the UNet architecture. An 
EfficientNet classifier that has been trained on a synthetic 
dataset of solar panel failures is used to categorize panels, and 
it performs the task with excellent accuracy. 

The suggested approach was evaluated on a dataset of over 
200 drone photos with over 300 single panels. The findings 
reveal that the panel detector can detect all panels in the test 
photos with a 90% certainty. In 87% of the test photos, the 
image preprocessing stage effectively separates the interior of 
the panels, and when the UNet model fails, a computer vision 
approach is utilized to increase the mask image's accuracy. 
With an F1-score of 0.93 for the no-fault class and an average 
F1-score of 0.83 for the fault classes, the panel classification 
stage achieves great accuracy in categorizing panels into fault 
or no-fault categories. 

The proposed methodology has the potential to increase the 
efficiency and accuracy of solar panel inspection, which is 
critical for solar park maintenance and energy output 
optimization. The suggested approach might be integrated into 
an autonomous drone inspection system in the future, allowing 
for continuous monitoring and real-time identification of 
problems in solar panels. Furthermore, the suggested approach 
might be expanded to other types of solar devices and tailored 
to other examination settings. 
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