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Abstract—Explainable AI is important for improving trans-
parency, accountability, trust, and ethical considerations in AI
systems, and for enabling users to make informed decisions based
on the outputs of these systems. It provides insights into the
factors that drove a particular machine learning model prediction.
In the context of deep learning models, invariance refers to the
property whereby diverse input transformations, such as data
augmentations, result in similar feature spaces and predictions.
The aim of this work is to unveil what invariant features the model
has learned. We propose a method coined as Pixel Invariance,
which measures the invariance of each pixel of the input. Our
investigation involves an analysis of four self-supervised models,
as these models are pre-trained to learn invariance to input
transformations. We additionally perform quantitative evaluation
measures to assess the faithfulness, reliability and confidence of
the explanation map, and analyze the four self-supervised models
both qualitatively and quantitatively.

I. INTRODUCTION

Explainable AI (XAI) refers to the development of algo-
rithms that can provide a clear and understandable explanation
for predictions of machine learning models. This ensures that
the decision-making process is transparent and enables users to
understand how and why their machine learning models make
certain decisions, which also increases accountability. Many of
today’s AI systems are highly complex and learn using large
amounts of data. This makes it difficult for users to trust and
rely on these systems, particularly in critical applications such
as healthcare, finance, and national security. Moreover, XAI
can also allow users to identify and address any data biases or
unintended consequences that may arise in AI systems. This
can help ensure that AI systems are fair and equitable, and that
they operate in a manner that aligns with ethical and societal
values. The EU’s General Data Protection Regulation (GDPR)
has also added the right to explanation [1].

Most local post-hoc attribution methods [2], [3], [4], [5],
[6], [7] are aimed towards attributing what features at an input
are responsible for a specific prediction. The result is usually a
heatmap that highlights which input patterns are relevant for the
prediction of a single, specific instance. However, these types
of explanations only reveal information about the input features
that are relevant for a prediction, but not about the invariant
features that the model has learned. Understanding the invariant
features the model has learned is just as essential as identifying
the crucial features for a prediction. There are several reasons
for this: First, the explanation can provide insights into which
examples or transformations are more effective in enabling the
model to learn invariance. Consequently, this knowledge may
guide us in determining which transformations to use. Secondly,
invariant features are those that remain constant across different

instances of the same problem. By identifying these features,
we can ensure that our model is learning generalizable patterns
that can be applied to new data. Thirdly, invariant features can
help us make models more robust to changes in the input data.
For example, if a model is trained to recognize faces, it should
be able to do so regardless of factors such as lighting, pose,
or facial expressions. Identifying the invariant features that are
important for this task can help to ensure that the model is
robust to these types of changes.

In this work, we present Pixel Invariance, an explainability
technique which visualizes the invariant features learned by a
model. The approach quantifies the contribution of each pixel
in the input image towards achieving invariance, thereby mea-
suring the extent to which individual pixels convey invariance.
Pixel Invariance is model-agnostic, meaning it does not require
access to the model structure or weights and instead relies
solely on the output prediction of the model. However, it can
also be partially model-agnostic, where access to the features
of the last layer of the model can enhance its performance.
In this work, we study the invariance of a model to different
data transformations of the input (e.g., color transformations).
Our approach is based on training an approximate interpretable
model, such as a linear model, to estimate the similarity between
an instance and a vast range of possible data transformations.
This asymptotically estimates the invariance of each pixel to
all possible transformations of it.

The remainder of this paper is organized as follows:
In Section II, we provide a background on the LIME [8]
interpretability framework. In Section III, we present our
proposed method, coined Pixel Invariance. In Section IV,
we present our evaluation protocol and conduct experiments
including quantitative and qualitative analysis. In Section V,
we conclude this work.

II. BACKGROUND TO LIME

LIME [8] is a popular model-agnostic interpretability
technique that can be used to explain the predictions of
any machine learning model, regardless of its complexity
or architecture. The basic idea behind LIME is to train a
simpler, interpretable model to approximate the predictions of
the original model within a small, local neighborhood around
a specific instance of interest. The interpretable model can
then be used to provide insights into why the original model
made its prediction for that instance. More formally, let X be
the input space, Y be the output space, and f be the original
model we want to explain that maps an input x ∈ X with p
features (e.g., super-pixels) to output y ∈ Y . Given an instance
of interest x, the goal of LIME is to find an interpretable
model g with parameters w ∈ Rp that approximates f in a979-8-3503-3959-8/23/$31.00 ©2023 European Union



small neighborhood N(x) around x. To do this, LIME uses
a two-step process. In the first step, it generates a set of K
perturbed instances X̄ =

{
x̄i . . . x̄K

}
by randomly sampling

from the neighborhood N(x) around x. Each perturbed instance
is then mapped to a prediction f(x̄i) by the original model f .
In practice, the perturbed instances X̄ are created by randomly
masking out super-pixels of the instance. In the second step,
LIME trains a local interpretable model g using the perturbed
instances X̄ and their corresponding predictions as input-output
pairs. The goal of the local model is to approximate f(x) in
the neighborhood N(x) as closely as possible while being
as interpretable as possible. The specific choice of the local
model depends on the application and the type of input data,
but some common choices include linear regression, decision
trees, or sparse linear models. To ensure interpretability, LIME
often imposes a sparsity constraint on the local model, which
encourages it to use only a small number of input features to
make its prediction. This can be accomplished through various
regularization techniques such as Lasso regularization. The
objective of LIME is given in Eq.1:

min
w

K∑
i=1

(
f(x̄i)− g(x̄i)

)2
+ λ∥w∥1. (1)

Once the local interpretable model g has been trained, it can be
used to explain the prediction of the original model f(x) for the
instance x. This can be done by examining the coefficients of
the model, which indicate which features were most important
in making the prediction. Alternatively, LIME can generate
a visual explanation, such as a heatmap or saliency map,
that highlights the regions of the input image that were most
important in making the prediction.

III. PROPOSED METHOD

We propose Pixel Invariance, a technique to explain the
amount of invariance each pixel carries in a given image. Our
method is inspired by LIME [8] and is based on training an
approximate linear model which can then be easily interpreted.
The output of the method is a heatmap highlighting the level
of invariance exhibited by each pixel. Unlike LIME, our
method requires two inputs, and approximates invariance as
the similarity between an instance and a wide range of applied
transformations to that instance. We note that this technique is
model-independent, that is, it can be applied to both CNNs [9]
or Transformers [10].

Given an input image x1, we generate an auxiliary dataset
X with B location-preserving augments of the image. Thus,
X =

{
(x1, x

i
2, s

i)
}
i=1,...,B

, where xi
2 corresponds to a

transformation of x1, and si is the cosine similarity score
between (x1, x

i
2), obtained by feeding the pair (x1, x

i
2) to the

original model we wish to explain. The surrogate model is
defined using a single linear layer W ∈ R3uv, where u, v
are the spatial width and height of the image and 3 is the
number of RGB channels1. In what follows, we define yi as
the sigmoid-activated mean of the two outputs of the surrogate
model applied separately on x1 and xi

2. By training W to fit
yi with si, each pixel will be assigned a weight reflecting its
importance to the similarity between between (x1, x

i
2).

1images can optionally be resized before flattening them as input to the
linear model

Fig. 1. The different self-supervised models we evaluate. The typical
architecture consists of a visual encoder (e.g., ResNet-50), and a projection
layer (e.g., MLP).

Additionally, we wish to capture the relationship between
the image and the invariant features learned by the model.
However, these features are too complex to be modeled by a
simple layer, hence we apply a dimension reduction scheme: we
collect and stack the extracted features from the projection head
output of the model for all xi

2 in a matrix F ∈ RB×D, where
D is the dimension of the projection head output. We feed
these features through a ReLU function and use Non-Negative
Matrix Factorization (NMF) [11] to decompose F into the
matrices M ∈ RD×V and H ∈ RV×B , where V < (D,B) is
the number of factorized components. The sample-wise average
of H is then used as an extra label to train the surrogate model.
We train W using stochastic gradient descent to minimize the
following loss function in Eq. (2). It is common to induce
sparsity in the weights using ℓ1 regularization with a weight
of λ, which we also include during training.

(2)
Li = −

(
si log yi +

(
1− si

)
log
(
1− yi

))
+ α

(
yi − 1

V

V∑
v=1

Hvi

)2

+ λ∥W∥1

Once trained, the weights associated to every pixel can
be visualized as a heatmap, where each weight indicates
how sensitive the pixel is to transformations and whether it
contributes to the invariant featµures. Having larger values of
V harms the performance, as we slowly approach the original
number of features D. For visually appealing results (not used
during evaluation), we trim values smaller than 0.5 to 0 and
blur the heatmap with a Gaussian kernel.

IV. EXPERIMENTS

In this section, we showcase qualitative examples of our
methodology and elaborate on the quantitative evaluation
protocol and provide scores for four self-supervised models.
We chose to evaluate self-supervised models due to their
pretraining objective of learning invariance, which is distinct
from image classification models that are trained to perform the
specific task of classification. Nevertheless, our methodology
can be applied to image classification models to explain the
invariance they possess. We evaluate four high-performant self-
supervised models developed in the past two years and have
gained increasing attention and popularity: SimCLRv2 [12],
SimCLRv2 (2×) [12], Barlow Twins [13] and SimSiam [14].
Each of them consists of a vision backbone (e.g., ResNet-50
[15]) and a projection head which learns invariance. Figure 1
shows a diagram describing these four models on a high level.



Fig. 2. Qualitative examples of our proposed Pixel Invariance method for 4 different self-supervised models: SimCLRv2 (1X) [12], SimCLRv2 (2×) [12],
Barlow Twins [13] and SimSiam [14]. The heatmap displays the degree of invariance of each pixel towards data transformations, with the color red indicating
strong invariance and blue indicating weak invariance.



The objective of SimCLRv2 is to maximize the agreement of
learned representations between two augmented views of the
same image (positive pairs) while minimizing the agreement
between other images in the same batch (negative pairs)
[16]; namely, augments of the same image should similar,
while augments from different images should be dissimilar.
SimCLRv2 (2×) doubles the dimension width of the model.
SimSiam uses positive pairs only. We refer to these models
as negative pair-free models. However, several tricks such as
an exponentially moving average encoder, gradient stopping
and a predictor network are required for these models to
function properly and avoid collapsing into a trivial solution.
Barlow Twins is another simple self-supervised model with a
pretext task based on cross-correlation. As in SimCLR, data
augmentation is used to obtain two different views of the same
image. Given the outputs from the model, the cross-correlation
matrix is measured and trained to be as close to the identity
matrix as possible. The objective is similar to how Principal
Component Analysis (PCA) operates. For fair comparison, all
self-supervised models use the ResNet-50 model architecture
[15] as the vision backbone.

A. Implementation Details

We generate an auxiliary dataset of 1000 samples to train
the surrogate model by using a combination of the color jitter
transform with a probability of 0.8, grayscale transform with
a probability of 0.2 and random erasing with a probability of
0.5 masking 2% - 33% of the image. In Equation 2, we set
α = 2, λ = 0.2 and V = 1. The linear model is trained for
100 epochs with a constant learning rate of 0.1 using gradient
descent.

B. Quantitative Evaluation

We randomly select 100 samples from the ImageNet [17]
validation set for evaluation. We use four quantitative evaluation
measures: Insertion, Deletion, Average Drop and Increase in
Confidence. The insertion and deletion game [18] is used to
evaluate image classification explanations. It is based on the
motivation presented in [19]. In the insertion game, we start
from a highly blurred image and gradually add image pixels
starting from the pixels identified as most important by the
explanation algorithm. This creates an output score curve that
we use to calculate the Area Under the Curve (AUC). A high
AUC generally means a good explanation, as adding relevant
pixels forces the model to change its decision. The deletion
game starts with the full image and gradually removes important
pixels, with a lower AUC indicating a better explanation. The
Average Drop and Increase in Confidence are used to evaluate
image classification explanations as proposed in [20]. The
Average Drop measures the change in confidence between the
full image and the highlighted part identified by the explanation
map. A lower Average Drop indicates a better explanation.
The Increase in Confidence measures how much the model’s
confidence increases when only the explanation map regions are
provided as input. A higher Increase in Confidence indicates a
better explanation. In order to accurately assess the invariance
of added or removed pixels, it is essential to utilize a similarity
measure in conjunction with another image. At each step of the
evaluation process, we calculate the similarity score between the
added or removed pixels of the evaluated image and a random

TABLE I. EVALUATION SCORES ON DIFFERENT MODELS

Insertion ↑ Deletion ↓ Avg. Drop ↓ Inc. Conf. ↑
SimCLRv2 (1x) [12] 0.648 0.281 0.562 0.004
SimCLRv2 (2x) [12] 0.689 0.269 0.448 0.024
Barlow Twins [13] 0.619 0.210 0.623 0.084

SimSiam [14] 0.713 0.330 0.413 0.054

transformation of that same image. The intuition is that adding
or removing invariant pixels will cause an increase or drop in
the similarity score when measured with a transformation of that
image. This procedure is repeated using 10 different random
transformations of the evaluated image, and the resultant scores
are subsequently averaged to derive a single value. In Table
I, we present scores of the four self-supervised models. We
observe that SimSiam and Barlow Twins are more invariant
than SimCLRv2, despite SimCLRv2’s superior performance on
the downstream task of image classification after fine-tuning.
This suggests that better invariant models does not always result
in improved accuracy upon fine-tuning.

C. Qualitative Evaluation

In Figure 2, we provide qualitative examples of the four self-
supervised models. Upon observation, it is generally evident
that all the self-supervised models studied exhibit a similar
capacity to learn invariant features. This outcome implies
that the adoption of diverse data augmentations to learning
invariance can lead to learning meaningful concepts that are
also representative of the object present in the image. It is
also evident that the heatmaps generated by SimSiam and
Barlow Twins exhibit less scattering and diffusion over the
background as compared to those produced by the SimCLRv2
model. This finding aligns with the results presented in the
preceding section, which indicated that SimSiam and Barlow
Twins outperform the other models in terms of quantitative
measures. Based on this correlation, it can be inferred that an
explanation that effectively covers the object suggests that the
model has achieved greater invariance and has learned more
robust concepts.

V. CONCLUSION

We proposed Pixel Invariance, an explainability technique
for visualizing the invariant features learned by a model. By
using this approach, we are able to assess the contribution of
each pixel in an input image towards achieving invariance. This
provides valuable insights into how invariant a given model is
to different data transformations. We then presented qualitative
examples and evaluated the method quantitatively.
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