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Abstract—Agriculture 4.0 is a new era in farming that uses
digital technologies to optimize crop yields and increase sustain-
ability by collecting, integrating, and analyzing data from various
sources. Decision Support Systems (DSS) are critical in collecting
vast amounts of data and transforming it into actionable insights.
This paper presents a robust DSS’s architecture that serves
as a user-centric cloud-based Farm Management System that
utilizes real-time data from various digital and space-based
technologies which are interconnected in a systemic approach.
The DSS incorporates artificial intelligence (AI) algorithms and
a user-friendly interface to collect data from digital tools and
remote sensing systems allowing farmers for timely interventions.
The DSS is integrated with an advanced blockchain system for
data evidence, integrity, and AI model verification and with a
cybersecurity platform to prevent cyber-attacks. It provides well-
informed proactive measures and automated visualized decision
processes for Integrated Pest Management (IPM) and Integrated
Nutrient Management (INM). Overall, our DSS represents a
promising solution to the challenges posed by Agriculture 4.0,
and opens up new opportunities for sustainable farming.

I. INTRODUCTION

Agriculture 4.0 is revolutionizing the way people cultivate
food and addressing global food security challenges by in-
tegrating advanced technologies such as artificial intelligence
(AI), big data, robotics, cloud computing, remote sensing,
and the Internet of Things (IoT) into the agricultural sector
[1]. This integration has led to an exponential increase in
the amount of data available from farms, enabling farm-
ers to continuously monitor crop growth, soil quality, and
weather conditions in real-time and make informed decisions
to enhance crop yields and profitability while minimizing
the ecological impact of agriculture [2]. Big data can offer
farmers predictive insights for farming operations and real-time
decision-making capabilities [2], while AI allows computer
programs to generate helpful recommendations and insights to
support farmers in making informed decisions [3]. Integrated
Pest Management (IPM) and Integrated Nutrient Management
(INM) are two important components of Agriculture 4.0 that
have gained considerable attention in recent years, aiming to

reduce the use of pesticides and fertilizers while improving
crop productivity [4].

Decision Support Systems (DSS) assist stakeholders and
farmers in making evidence-based and precise decisions. Ef-
fective DSSs are crucial for processing and analyzing big data,
and for providing actionable insights to improve agricultural
management [5]. Big data and precision agriculture technolo-
gies have led to an exponential increase in available infor-
mation, making the need for such systems critical [6]. Thus,
DSSs play a crucial role in supporting agri-food operators with
essential decision-making, farm management, and planning
tasks [7], by gathering data from various sources, analyzing
it, and presenting the results to the agri-food operator.

Although DSSs are useful for farm management, their
adoption is hindered by significant challenges [8]. Farmers
often lack experience and knowledge in using DSSs, and the
complexity of these systems can make it difficult for them
to comprehend the reporting [9]. DSS developers may also
fail to fit farmers’ requirements and decision-making styles
[9]. Additionally, the limited functionality of current DSSs
often means that farmers have to use multiple systems to
manage different agricultural activities [9]. Moreover, many
DSSs prioritize simple reporting over preventative action [9].
Finally, some fundamental factors, such as climate change, soil
spatial variability, and crop disease, may be overlooked when
generating advice, leading to imprecise outputs [9].

Several DSSs support precision agriculture [10]. Vite.net
[11] informs vineyard farmers about vine growth, pest con-
trol, and disease management. DyNoFlo Dairy [12] models
nutrient budgeting, crop, and optimization to assess nitrogen
leaching from dairy farm systems. AquaCrop [13] simulates
the impact of rainfall on wheat yield. ATLAS [14] enables crop
availability simulation on a landscape with different scenarios
for pests, diseases, and biological control. CropSAT [15] uses
satellite images to calculate variable rate nitrogen fertilization.
Six web-based visual-assisted DSSs were developed for several
agricultural use cases [16]. A DSS was refined to assess the soil
functions and provide management advice [17]. Visual DSSs
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include tools for vineyard land usage [18], rainfall and yield
production [19], real-time in-field sensor data [20], and drip
irrigation system design and scheduling, soil, temperature, and
water monitoring, and water flow analysis [21].

In this paper we present the DSS architecture of the
European Union’s Green Deal project PestNu1 implemented as
an efficient and robust user-centric Farm Management System.
The PestNu DSS collects data from advanced various digital
tools and space-based technologies including Autonomous
Mobile Robots (AMR), nutrient analyzers, robotic traps (smart
traps), and remote sensing tools such as AgroRadar2 that is
based on Earth Observation (EO) systems using Copernicus
data and services. The system incorporates robust AI algo-
rithms and data analytics pipelines to enhance diagnosis, en-
abling effective follow-up, informed decisions, and automated
decision processes for IPM and INM. The DSS features visual
analytics and data visualization of the analyzed data and in-
terpretations, along with generating mitigation strategies based
on the severity of the diagnosis. The system is interconnected
to a blockchain-based system on top of a federated cloud in-
frastructure that ensures data and AI model result verification.
In addition, the DSS offers improved cyber-secure operation
by deploying state-of-the-art anomaly mechanisms to reduce
DSS vulnerability in cyber-attacks and threats. Finally, the DSS
produces simplified reports presenting only critical parameters
in a clear and concise manner. The paper’s structure is as
follows: Section II explains the DSS architecture, followed by
a discussion in Section III. Finally, Section IV presents the
study’s conclusions, along with planned future work.

II. METHODOLOGY: ARCHITECTURE

This section presents the architecture of PestNu’s DSS,
which comprises three levels: a) data acquisition, b) data
processing, and c) data visualization. At the first level, data
related to nutrients, pests, and crop anomalies are collected
and analyzed from digital and space-based technologies. The
digital tools continuously collect data from the environmental
sensors, utilize a firewall system to ensure the integrity of the
data, and transmit it, under a secure communication channel to
the DSS. The second level stores the data in a secure database
and uses AI algorithms to analyze the data in order to generate
insights on crops, pests, and nutrients status. Cybersecurity
and blockchain are implemented to enhance data security
and ensure the integrity of the data. Finally, the third level
presents the information generated by the AI algorithms in an
interactive user interface (UI). The UI provides the farmer with
a real-time view of the previous parameters and also offers
decision support for applying timely agronomic best practices.
The high-level architecture is shown in Figure 1.

A. Data Acquisition Level

At the data acquisition level, the interconnected digital and
space-based technologies such as: a) AI-based robotic traps,
b) AMR (Agrobots), c) AgroRadar EO-based system, and d)
nutrient analyzers collect data which is then fed into the DSS.
However, the security of the transmission from the sensors’
data to their tools must be ensured.

1https://pestnu.eu
2https://business.esa.int/projects/agroradar-1

Firewall: A firewall application is used to enhance network
security. It inspects data packets to detect and prevent security
threats, such as denial-of-service attacks or port scanning. Ac-
cess control lists are also utilized to control which traffic types
are allowed to pass through, and network address translation
is employed to hide device IP addresses.

In order to collect real-time data related to pests, crop
growth, soil health, and environmental factors such as tem-
perature and humidity, a variety of interconnected digital tools
are utilized.

Autonomous Mobile Robot: An AMR navigates in green-
houses, aquaponics, and open fields for effective surveillance
of insect and fungal disease and 3D spot spraying. The
AMR is equipped with high-precision navigation sensors, a
computer vision system, and robotic actuators. It reports its
mission (insect and disease detection and spraying actions) in
a comprehensive report as a JSON file and is operated via a
state machine in the Robot Operating System (ROS), which
interfaces with the DSS.

Nutrient Analyzers: Real-time digital analysis of water
content is done using Ultraviolet (UV) LED-based nutrient
analyzers that measure nitrate/nitrite (NO−

3 , NO−
2 , phosphate

(PO3−
4 ), and ammonium (NH+

4 ) levels. The analyzers send 4
byte floats of each nutrient along temperature (float, 4 bytes),
humidity (float, 4 bytes) and leak detection (boolean, 1 byte)
in JSON format via the Sierra Wireless Octave. The Octave
cloud service provides APIs and cloud actions to access the
data, which will interface with the DSS.

Robotic Traps: AI robotic traps are used for pest de-
tection and monitoring. The smart traps are equipped with
yellow sticky adhesive papers coated with pheromones or
chromotropic food lures and a camera that periodically capture
images and sends them by IoT networks to a database at the
DSS server (in JPG or PNG format). The traps also monitors
environmental data, including external humidity, atmospheric
pressure, and temperature, as well as the GPS location, data
for solar battery percentage, glue paper quality percentage, and
pheromone quantity percentage and sends them in a CSV or
JSON to the DSS. The communication of the robotic traps
with the DSS is established via REST API protocol.

AgroRadar: This system makes use of the Copernicus
program’s data and services (Sentinel-1, Sentinel-2), presented
as GeoTIFF images and leverages Meteosat Second Generation
(MSG) EO satellite data. Combining all this, AgroRadar adds
a pre-processing layer to the DSS by identifying abnormalities
in the fields and generating alerts, in a PDF format, for nu-
trients and pests stress and by calculating crops sustainability.
Moreover, the system models historical data, benchmarking
the crops and the regions. In addition, the system collects
data related with the emissions, in the production of different
crops to calculate their CO2 footprints in JSON format. The
communication of the EO system with the DSS is established
via REST API protocol.

The latter tools allow the collection of real-time data, but
their communication channels are vulnerable to hacking, inter-
ception, and disruption. Thus, secure communication protocols
and network security measures are implemented.

Security Channel: To ensure the confidentiality and in-
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Fig. 1. DSS high-level architecture. (a) At data acquisition level all data from the digital tools are collected. (b) At data processing level, sophisticated algorithms
run under blockchain and cybersecurity. (c) At data visualization level, all information is presented via a user-friendly UI.

tegrity of information transmitted from the aforementioned
tools, end-to-end security is implemented across all layers of
the tools. ARM TrustZone isolates security-sensitive services,
tasks, and processes in the CPU and RAM. A dedicated
firewall is used for threat mitigation, and policy-based secu-
rity is applied to IoT controllers and digital tools. SSL/TLS
encryption is used at the application layer, and IPSEC/VPN
technology is used for network-based encrypted communica-
tion.

B. Data Processing Level

The DSS integrates and analyzes multi-dimensional data
from digital tools to develop a Farm Management System for
circular economy strategies and provide recommendations to
farmers. It uses descriptive and predictive AI algorithms to
analyze current and historical data from all tools and provide
comprehensive summaries and predictions. This analysis is
implemented over a secure private cloud infrastructure, incor-
porating AI models and data analytic pipelines for processing
the data from the sources level.

Database: The Database Management System (DBMS)
stores and manages the incoming data of the tools, through the
Security Channel and stores the AI models results. It also en-
ables communication with the Blockchain for data verification.
In the proposed solution, MongoDB [22] is implemented as it
supports SSL/TLS network protocols for secure and optimized
inter-process communication.

AI Processing: Sophisticated AI algorithms leverage big
data collected from digital tools to detect pests and predict
future attacks. Deep learning methods analyze AMR’s color
and spectral images to identify black aphids, whiteflies [23],
and Botrytis cinerea [24]. Deep learning algorithms analyze
images captured by robotic traps to localize and classify
present insects [25]. Self-adaptive models use pest detections
and environmental data to forecast future pest presence and
attacks. Finally, emission data collected from AgroRadar are
processed using Intergovernmental Panel on Climate Change
(IPCC) equations to generate CO2 footprints and a final index
representing product sustainability.

Data Analytic Pipelines: The data analytics pipeline gen-
erates tailored recommendations based on pest predictions, soil
types, and weather patterns. Alerts and cautions are sent to
farmers, and preventative measures are taken when nutrient
and pest levels approach a given threshold. The threshold can
be adjusted by the farmer.

Cybersecurity Mechanisms: To secure the DSS and its
data, the SiVi platform3 is used, which utilizes machine
learning algorithms and visualization graphs (see II-C). The
platform employs entropy-based traffic anomaly detection to
classify data and flow messages as “typical” and “abnormal”,
allowing for faster classification of potential cyber threats.
The SiVi platform also includes supervised and unsupervised
algorithms to recognize known and unknown anomalies and

3https://sidroco.com/sivi tool/
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threats, ensuring the system’s protection. The system’s library
stores a collection of annotated network attacks, enabling the
supervised algorithms to classify incoming traffic, while the
unsupervised algorithms can detect global, contextual, and
collective outliers.

Blockchain System: A Distributed Ledger Technology
(DLT) system is connected to the DSS in order to verify the
tools’ data and to provide AI model verification. Hyperledger
Sawtooth [26] is implemented that consists of three nodes
each one running one validator, a REST API, a consensus
engine, a set of transaction processors and all are connected
in a MySQL database [27]. The components are deployed
as Docker containers. Sawtooth forwards each request to the
DLT Network for authorization by offering a REST API for
interaction of the DLT Network with applications using normal
HTTP/JSON protocols. Both data from the digital tools and
the AI model results are send from DSS Database, through
the DLT API, into the Ledger, to be recorded.

C. Data Visualization Level

The DSS’s data visualization system displays information
about pests, nutrient levels, soil health, crop growth, and
weather patterns to improve sustainability and efficiency for
farmers. The system is designed to be simple, effective, and
customizable to meet the needs of diverse stakeholders. The
system includes a user-friendly graphical user interface (GUI)
that provides functionalities for farmers to use available data
resources and analysis pipelines.

Holistic Report: A new comprehensive and easy-to-
understand holistic report is being developed, which consol-
idates information from all digital tools, including threshold
parameters, locations, and mitigation actions. The report gen-
erates warnings and decisions, providing guidance for effective
decision-making and implementation in case thresholds are
exceeded.

Visual Analytics: Visual Analytics use analytical tech-
niques and interactive visualizations to help farmers analyze
complex data. It allows farmers to monitor their crops over
time and identify areas that require attention.

Data Visualizations: Data Visualizations uses graphical
representation to display various types of data and information.
It shows the pheromone level and the glue paper remaining life,
used by the robotic trap. It provides colored maps that show the
areas of the field with the relative soil health, and crop growth
to detect unexpected differentiation. AMR status (e.g., battery
level, fertilizer tank level) is also presented to the farmer in
order to reduce the time needed to spend on field. Finally, the
nutrient levels measured by the analyzers are provided along
useful information regarding the condition of the device.

Historical Data and Results: Historical data and results
are analyzed using data analytics and visual analytics methods,
including temporal plots, clustering views, and graph-based
visualizations. The visualization services present the output of
data analysis and AI modeling execution, allowing researchers
to provide feedback such as marking inaccurate classifications,
or editing wrong segmentation contours. This feedback is used
to retrain and refine AI models in real-time.

III. DISCUSSION

The three levels for designing a DSS - data acquisition,
processing, and visualization - ensure an organized and ef-
ficient system. This ensures that the system is efficient, and
each level has a specific purpose, making it easier to be
managed and maintained. Each level has a distinct function,
with data acquisition collecting and securing data, data pro-
cessing generating accurate results for decision-making, and
data visualization presenting insights in a user-friendly way.
The use of blockchain and cybersecurity mechanisms in the
data processing level enhances the security and reliability of
the DSS. Blockchain technology provides a decentralized and
tamper-proof method for storing and managing data, ensures
that the data stored in the database is secure and cannot be
tampered with by unauthorized users. Similarly, cybersecurity
mechanisms, such as firewalls and secure channels, ensure that
the data transmitted between the different levels is secure and
confidential. The data visualization level has a user-friendly
UI with the ability to present insights in a comprehensive and
simple manner, enabling decision-makers to understand the
insights generated easily. The use of historical data and results
enables decision-makers to compare and contrast data over
time, making it easier to identify trends and patterns. Finally,
the DSS improves continuously through feedback, enhancing
the precision and consistency of insights.

IV. CONCLUSION AND FUTURE WORK

The three-level architecture for designing a DSS is a
robust, meaningful, and useful approach to enhancing the
security and reliability of the system while enabling efficient
and effective data-driven decision-making. The use of DLT
and cybersecurity mechanisms ensures that the data is secure
and reliable, while the data visualization level offers several
advantages such as presenting insights in a comprehensive and
simple manner and providing historical data and results. The
feedback provided for AI model re-training further enhances
the accuracy and reliability of the insights generated, ensuring
that the DSS continually improves and evolves.

The proposed DSS has the potential to revolutionize farm-
ing practices and enhance sustainability in Agriculture 4.0. In
future work, we plan to implement, demonstrate, and field-test
the DSS in open fields at CDTA El Mirador and Tilamur in
Spain and in aquaponics at University of Thessaly in Greece
to provide empirical evidence of its effectiveness in optimizing
crop yields, reducing waste, pesticides, and increasing sustain-
ability. We will evaluate the DSS’s accuracy and effectiveness
in decision-making. Additionally, we will ensure that the DSS
generates certified reports that provide farmers with accurate
and easily comprehensible information, enabling them to make
informed decisions based on digital tools.
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