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Abstract—In this paper, the problem of lidar super-resolution
is explored under a federated learning perspective. The high
cost of high-resolution lidar sensors is a major obstacle to
the widespread adoption of connected and autonomous vehicles
(CAVs). To reduce the cost, this study investigates the use of
low-cost sensors in conjunction with super-resolution algorithms.
Unlike previous studies that approach this problem with central-
ized solutions, this work employs federated learning to leverage
private lidar data from different autonomous vehicles under
different environmental conditions, resulting in more robust
and diverse deep learning model. Extensive experiments on
a real-world lidar odometry dataset highlight the merits and
applicability of the proposed lidar super-resolution method with
federated learning.
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I. INTRODUCTION

Connected and Autonomous Vehicles (CAVs) are a rapidly
evolving area of machine learning that has the potential to
revolutionize modern life [1]. However, widespread adoption
of CAVs is currently constrained by two main factors, i.e.,
the high cost of the required sensor equipment, such as high-
resolution lidar (light detection and ranging) systems, and
the lack of understanding of data-driven machine learning
methods, which poses significant trust issues for critical ap-
plications e.g., autonomous driving. It is worth noting that
the cost of a 64-channel HDL-64E Lidar, which is typically
used for autonomous driving, is approximately 85, 000$ [2].
However, the large-scale use of such systems will become
possible only if the costs associated with the incorporation
of this technology are significantly reduced. Two of the main
factors responsible, at present, for the increased costs are
the expensive sensing equipment (i.e., high-resolution Lidar
systems) and the need for processing devices with increased
memory and computation capabilities.

To address these challenging issues, in literature several
studies have investigated the use of low-cost sensors, e.g, a 16-
channel Lidar, in conjunction with super-resolution algorithms
to enhance the data obtained from the sensor, thus aiming to
replace the expensive high-resolution Lidar sensors and reduce
the overall cost of deploying the CAV technology. In more
detail, two main categories of approaches have been explored
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to improve the performance of Lidar odometry. The first
category includes the integration of additional sensors, such
as visual cameras [3] or inertial measurement units (IMUs)
[4], [5], or a combination of both IMUs and cameras [6].
The second category involves the application of appropriate
restoration methods to the noisy or low-resolution lidar data.
In most cases, a super-resolution algorithm based on deep
learning is used, either after the initial computation of range
images [7] or directly in the point cloud domain [8], [9].

Despite the efficacy of deep learning approaches, they
necessitate copious amounts of diverse training data. Conse-
quently, data acquired from individual autonomous vehicles
may prove inadequate for optimizing these models [10]–
[12]. One viable solution is to gather data from multiple
entities and develop more compact neural network models in
a centralized manner. However, this approach adopted by the
above mentioned works, may be hindered by privacy concerns,
which may prevent autonomous driving entities from sharing
their datasets, even if they are interested in using their own
data and similar private datasets from others [13]. In addition,
data sharing can lead to significant communication overhead,
making the collection and transfer of data from different
locations to a central location both time consuming and costly,
especially for large amounts of data [14]. Federated Learning
(FL) as a secure and distributed methodology can effectively
address the challenges associated with high-resolution lidar for
autonomous driving. FL allows multiple clients to collabora-
tively learn a deep learning model without having to share
their own private datasets, ensuring privacy [14]. The privacy-
preserving and decentralized nature of FL makes it well-suited
for deployment at the network edge, where each autonomous
driving unit can be treated as a client that includes a lidar
sensor for data collection [14], [15].

In contrast to the existing literature, which primarily fo-
cuses on centralized settings, this study presents a prototype
implementation of federated learning that aims to address the
challenge of LiDAR super-resolution in automotive scenes.
To the best of our knowledge, this problem has not been
studied previously from the federated learning perspective. Our
approach leverages the distributed nature of federated learning
to utilize private lidar data collected from different dispersed
autonomous vehicles in various environmental conditions, e.g.,
rural and urban areas. The proposed framework allows us to
derive a more robust and diverse model that can handle a
wider range of environmental settings. To sum up, the key
contributions of this paper are the following:979-8-3503-3959-8/23/$31.00 ©2023 IEEE



• A novel federated learning-system is proposed that
tackles LiDAR super-resolution in automotive sce-
narios, leveraging distributed data from autonomous
vehicles leading to a robust and versatile model.

• Extensive experiments conducted on a real-world lidar
odometry dataset emphasize the merits of the proposed
LiDAR super-resolution method utilizing federated
learning.

II. PRELIMINARIES

A. Lidar super resolution

Consider a high resolution point cloud derived from a 64-
channel lidar sensor, which results in a high-resolution range
image X ∈ RC×M , where C denotes the vertical resolution
(i.e., the number of channels or lasers such as C = 64) and
M represents the horizontal resolution of the range image.
Based on the degradation model in [7], a corresponding low-
resolution range image Y ∈ Rc×M with the same horizontal
resolution as X but only c < C channels in the vertical
resolution (e.g., c = 16) can be derived as follows

Y = SX +N (1)

where S ∈ Rc×C denotes the downsampling operator that
selects only the c channels from the high resolution range
image and N is a zero-mean Gaussian noise term. Thus, it
belongs to the category of the highly ill-posed inverse imaging
problems [16]. The objective is to estimate the high-resolution
range image X given the low-resolution range image Y , so
that

X = F(Y ) (2)

where F(·) denotes the mapping function that can be model
using some deep learning network. The desired high-resolution
point cloud is derived by transforming the estimated high-
resolution range image into 3D coordinates (see, Figure 1).

It is imperative to emphasize that the development of a
deep-learning model specific to the LiDAR super-resolution
problem requires an extensive and heterogeneous dataset con-
sisting of high- and low-resolution range images representing
a variety of environments and scenarios. To address this
problem, we developed a federated learning system that lever-
ages information gathered from a set of autonomous vehicles
operating in different locations and environmental conditions.
This methodology facilitates the creation of a robust and
comprehensive model while bypassing the need to transmit
large amounts of data to a central server, thereby mitigating
potential communication and privacy issues.

III. FEDERATED LEARNING LIDAR SUPER RESOLUTION

To mathematically formulate the considered lidar super-
resolution federated learning problem, we define a set
of N edge devices, where each device n ∈ N =
{1, 2, . . . , N} contains a local private dataset, denoted as
Dn = {Xi,n,Y i,n}pn

i=1, where xi
n is the high-resolution

range image, and Y i
n is the corresponding low-resolution range

image.

Given Dn, each device n aims to train a local deep learning
model, whose weights are denoted as θn. This can be achieved

by minimizing a local objective gn(θ;Dn) that utilizes some
loss function, denoted as L(.). In particular, the local objective
of device n is:

gn(θn;Dn) =
1

pn

pn∑
i=1

L(Xi,n,Y i,n) , (3)

Under the FL framework, the devices aim to collaboratively
train a global model, say θg , in a manner orchestrated by a
central server. Particularly, the FL minimizes the aggregation
of the local objectives and entails a common output for all
devices using the global model. The objective of FL is:

G(θg) =

N∑
n=1

wngn(θn;Dn) (4)

where wn denote some weight coefficients.

A. Edge device-side

On the edge-device side, each autonomous vehicle n uti-
lizes its private dataset Dn to optimize a local deep learning
models to solve the lidar super-resolution problem, based on
the following loss function:

L(ϑn) =
1

pn

pn∑
i=1

|Y i,n −Fϑn(Xi,n)|, (5)

where pn is the size of the local dataset and Fϑn
represents

the local model at device n whose weights are denoted as ϑn.

The aim of the deep learning model is to approximate the
mapping function in equation (2). The deep learning model
used in this study employs an encoder-decoder architecture
proposed in [7]. Specifically, the encoder part of the network
includes convolutional blocks and average pooling layers to
down-sample feature spatial resolutions and increase filter
bands. The decoder portion of the network uses transposed
convolutions to increase the spatial resolutions of the features
and produce high-resolution output. After each convolution
within the convolutional blocks, batch normalization and ReLU
activation functions are used. The final high-resolution range
image is generated by the output layer, which uses a single
convolution filter without batch normalization. Figure 2 illus-
trates the considered model.

B. Server-side

On the server-side, the primary objective is to compute
a global model based on the local models received from
participating edge autonomous agents. Specifically, the server
aggregates the local models ϑn

N
n=1 into a new global model

denoted as ϑg by applying a weighted average fusion rule, i.e.,

ϑg =
1

N

N∑
n=1

wnϑ
m
i , (6)

(6), where wn represents the size of the local dataset of the n-
th device. After aggregating the local models, the centralized
server sends the new global model to all devices, which then
use it as the initial point to update their local models using their
own data via the training procedure described in equation (4).
This process is repeated for T communication rounds until the
global model converges.
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Fig. 1. Given a 3D point cloud from a 16-channel lidar, the considered
framework involves projecting the low-resolution point cloud onto a 2D range
image. This image serves as input for a deep learning model that estimates the
high-resolution range image. The estimated image is then transformed back
into 3D coordinates to generate the high-resolution point cloud.

Fig. 2. The considered deep learning model employed from the edge
autonomous vehicles for the proposed lidar super-resolution FL framework.

C. Post processing method - Outlier Detection

A major problem of using convolutional operations on
range images is the smoothing effect resulting in inaccurate
object boundaries in the generated 3D lidar maps [7]. To tackle
this problem, the Monte Carlo dropout (MC-dropout) [17] is
employed to estimate the uncertainty of range predictions.
In particular, the MC-dropout regularization approximates a
Bayesian Neural Network (BNN) by performing multiple feed-
forward passes with active the dropout layers during inference
time, resulting in a distribution over outputs. Thus, given a low-
resolution range image X , we derive the following expressions

Y ∗ =
1

K

K∑
k=1

Fϑg
(X)

σ(Y ) =
1

K

K∑
k=1

(Fϑg
(X)− Y ∗)2 (7)

where K defines the number of the forward passes, Y ∗ denotes
the mean value of the estimated range image and σ(Y ) is
the uncertainty. To remove the outliers i.e., points with high
variance, a noise removal threshold, denoted as µ is introduced,
scaling linearly with the predicted sensor range, to account for
increasing noise levels with distance. Thus, the final output is

given by

Y =

{
Y ∗, if ≤ µY ∗.

0, otherwise.
(8)

Throughout the study, the scaling parameter was set 0.03 and
an inference level of 50 were chosen for optimal results

IV. EXPERIMENTAL PART

To validate the effectiveness of the proposed federated
learning framework, a series of experiments were carried out
on the real-world driving dataset named Ouster1 . The objective
was to upscale the data from a 16 to 64 channel lidar by a
factor of 4. The experiments were conducted on the simulation
framework that was developed in [18].

A. Datasets

Training Data: Regarding the training, we employed the
same dataset presented in study [7]. A 64-channel lidar, OS-
1-64, was simulated in the CARLA Town 2 scene, matching
the Ouster dataset field of view (33.2°). For the same scene,
a 16-channel lidar, OS-1-16, was simulated to generate low-
resolution point clouds. Both high- and low-resolution point
clouds were projected onto range images, resulting in 7000
pairs of 64x1024 and 16x1024 images. The images were then
normalized to a range of 0-1 for training. Note that Town 2
scene contains a variety of environmental settings, resulting in
a rich dataset that simulates the diverse experiences clients may
encounter. Testing Data: To validate the performance of the
proposed FL architecture, the real-world Ouster lidar dataset
was utilized. This dataset comprises 8825 scans collected over
a 15-minute drive in San Francisco using an OS-1-64 3D lidar
sensor. The high-resolution point clouds were converted into
64x1024 range images, and 16 rows were extracted to create
16x1024 low-resolution images. These data pairs were utilized
to assess the architecture’s performance in recovering high-
resolution 3D point clouds from low-resolution inputs.

B. Implementation Details

Federated learning scenario: We analyzed a network
comprising of 5 autonomous vehicles (nodes). Consequently,
we partitioned the aforementioned training data into 5 distinct
blocks, with each block representing the local dataset of an
individual client. During the local training on the edge devices,
we employed 5 epochs, along with a learning rate and batch
size of 1e-04 and 6, respectively. Moreover, the communication
rounds between the central server and the edge devices were
set to T = 50 after we thoroughly explored the parameter space
to determine their optimality. The local models were trained
using the Adam optimizer.

Compared Methods: We compared the proposed FL ap-
proach with: (i) Centralized scheme: Conventional approach
where a central server gathers all available data from dis-
tributed edge devices to train the lidar super-resolution model.
(ii) Individual scheme: When a single client works alone with
limited data, without participating in the federated learning
process. For the training process of the above scenarios, we
used 50 epochs with learning rate equal to 1e − 04 utilizing
the Adam optimizer.

1https://github.com/ouster-lidar/ouster example
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Fig. 3. 3D points clouds: (a) lidar-16, (b) FL-scheme with Monte Carlo dropout, (c) FL-scheme without Monte Carlo dropout, (d) ground truth lidar-64 (e)
Centralized scheme and (f) Individual learning scheme.
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Fig. 4. Loss of the derived global model from the proposed FL scheme
vs communication rounds along with the best accuracy achieved by the
centralized and individual training schemes.

C. Federated Learning - Lidar super-resolution performance
on raw data

In this section, a comparison is performed between the
proposed FL method and the other two centralized approaches.
Table I summarizes the quantitative results comparing the
reconstructed high resolution range images with the corre-
sponding ground truth images based on the L1 loss. Addition-
ally, Figure 4 illustrates the convergence of the global model
obtained from the FL scenario, along with a comparison to
the best accuracy achieved by the centralized and individual
training schemes. It is evident that the proposed FL scenario is
able to achieve competitive performance against the centralized
solution. Although the centralized scheme performed better
in terms of quantitative results, it requires the sharing of
massive amounts of data, thus introducing a significant burden
on the communication links between the edge devices and
the central server, and also privacy concerns. Moreover, the
proposed federated learning method provides a significant
advantage over the individual training scheme when clients
seek to train their model using only their private data. While
a client may continuously gather new data, this data may
be limited in scope and diversity, potentially resulting in a

TABLE I. QUANTITATIVE RESULTS.

Dataset Method Data training size L1 loss

FL 700 per client 0.0357
Ouster Centralized scheme 7000 0.0336

Individual scheme 700 0.0427

less accurate and less generalizable model. The FL approach,
however, enables clients to obtain more accurate models by
leveraging information from diverse datasets obtained from
various autonomous vehicles operating in different locations
and environmental conditions. Additionally, Figure 3 illustrates
the reconstructed point clouds derived from the considered
approaches along with the ground truth 64-lidar and and the
16-lidar point clouds, providing strong evidences about the
applicability of the proposed FL system in autonomous driving
problems.

V. CONCLUSION

In this study, the problem of lidar super-resolution was
studied under a federated learning perspective. The feder-
ated learning approach demonstrated competitive performance
compared to the centralized solution while mitigating privacy
and communication overhead concerns. By using federated
learning, clients were able to leverage different data sets from
multiple sources, improving model accuracy. Future research
directions should focus on extending privacy-preserving na-
ture of federated learning including methods such as secure
differential privacy, or homomorphic encryption. In addition,
conducting experiments in a variety of more complex envi-
ronments and weather conditions will provide further valuable
insight into the benefits of the proposed federated learning
methodology for lidar super-resolution.
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