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Abstract—The objective of this work was the investigation of
multiscale Amplitude Modulation - Frequency Modulation (AM-
FM) analysis based on Difference of Gaussians (DoG) filterbanks
representations in order to predict the risk of stroke by analysing
carotid plaques ultrasound images of individuals with asymp-
tomatic carotid stenosis. We computed the instantaneous ampli-
tude, instantaneous phase and the magnitude of instantaneous
frequency to extract histogram features on each plaque region.
The Support Vectors Machine classifier was implemented to
classify asymptomatic versus symptomatic plaques. A dataset of
100 carotid plaque images (50 asymptomatic and 50 symptomatic)
were tested, and showed that the AM-FM features based on DoG
filterbanks and simple histograms performed better than the
traditional AM-FM features. Best results were obtained when
an eight scale filterbank with a combination of scales was used
reaching the accuracy of 75%.

Index Terms—mplitude Modulation - Frequency Modulation
(AM-FM)mplitude Modulation - Frequency Modulation (AM-
FM)A, Difference of Gaussians, Carotid plaque, Classification,
Ultrasound imaging.

I. INTRODUCTION

It is very important to predict the risk of stroke for individ-
uals with asymptomatic carotid plaque based on an objective
quantitative methodology allowing risk-benefit assessment of
endarterectomy in high-risk cases [1]. It has also been reported
that individuals with echolucent atherosclerotic plaques have
an increased risk of ischemic cerebrovascular events [2].
Additionally, plaque echolucency can be used to predict stroke
[3]. It has also been reported that plaques that are more
echolucent and heterogeneous are often associated with higher
cerebrovascular risk and the development of ipsilateral neu-
rological symptoms [4]. However, homogeneous hypoechoic

and hyperechoic plaques usually remain asymptomatic without
signs of ulceration.

Over the years, AM-FM representations have been used in a
wide variety of medical image analysis applications based on
a vastly reduced number of features that can be easily learned
by simple classifiers [5]. More specifically, on AM-FM mod-
els, decompose images into AM-FM components where the
instantaneous frequency provides a descriptor of local texture,
the instantaneous amplitude captures slowly-varying bright-
ness variations, while the instantaneous phase provides for a
powerful descriptor of location, generalizing the traditionally
important role of phase in the Fourier Analysis of images [6].
Previous work based on multiscale AM-FM analysis using
a Gabor filterbank was reported by Christodoulou et al. [7],
to classify carotid plaque ultrasound images of asymptomatic
versus symptomatic cases with satisfactory results.

This paper describes the first study where multiscale AM-
FM representations are computed using a filterbank based on
Difference of Gaussians (DoG). In addition, the new methodol-
ogy is used to separate asymptomatic from symptomatic cases
based on ultrasound images of the atherosclerotic plaques. A
fundamental advantage of the use of DoG filterbanks is that
the new scales are completely invariant to rotations of the
image. We computed the ultrasound plaque AM-FM feature
sets based on histograms of: (i) instantaneous amplitude,
(ii) instantaneous phase and (iii) magnitude of instantaneous
frequency. We note that we expect that there is a relationship
between AM-FM features and carotid plaque types. More
generally, the relationship between texture features and plaque
types has been previously explored in [8], [9].979-8-3503-3959-8/23/$31.00 ©2023 IEEE



II. MATERIAL & METHODS

A. Image Acquisition and Processing

We analysed a total of 100 carotid plaque ultrasound images
(50 asymptomatic and 50 symptomatic). Symptomatic plaques
were labelled with a follow-up of 6–96 months (mean 48
months) for the cases of stroke, transient ischemic attacks and
amaurosis fugax. Asymptomatic plaques were never associated
with symptoms [4]. Bilateral carotid duplex scanning was
performed on admission to the study. Plaques were segmented
by expert physicians using the “Plaque Texture Analysis
software” version 3.2 (Iconsoft International Ltd, Greenford,
London, U.K.) [4]. We performed image intensity and image
resolution standardization. Image intensity normalization is
performed using the image intensity values for blood (mapped
to 0) and adventitia (mapped to 190) as described in [4]. Image
resolution was standardized at 20 pixels per mm.

B. Multiscale AM-FM

An input image I(x, y) is expressed as a sum of AM-FM
components as given by:

I(x, y) =

n=M∑
n=1

αn(x, y) cos(ϕn(x, y)) (1)

where n denotes the different AM-FM components, αn(x, y)
the Instantaneous Amplitude (IA) functions and ϕn(x, y) the
instantaneous phase (IP) functions.

The analytic image extension can be computed effectively
through the application of the 1D Hilbert-transform along each
row as given by [10]:

IAS [k1, k2] = I [k1, k2] + jH1D {I [k1, k2]} (2)

≈
K∑

n=1

αn[k1, k2] exp (jφn[k1, k2]) . (3)

We note that the AM-FM decomposition is not expected
to hold exactly because the underlying multiscale filterbank
will not perfectly cover the entire 2D frequency spectrum.
Nevertheless, the scales are designed to approximately cover
the entire 2D frequency spectrum. Thus, the resulting AM-FM
decomposition will provide a nice approximation to the input
image.

The extended analytic image is then processed through a
filterbank to produce:

IAS,i[k1, k2] = gi[k1, k2] ∗ IAS [k1, k2] (4)

where gi denotes the impulse response of the i-th filter in the
filterbank.

We then calculate the instantaneous amplitude, the instan-
taneous phase and the instantaneous frequency using [11]:

αi[k1, k2] =
|IAS,i[k1, k2]|

|Gi(∇φ[k1, k2])|
, (5)

φi[k1, k2] = arctan

(
imag(IAS,i[k1, k2])

real(IAS,i[k1, k2])

)
, (6)

∇φi[k1, k2] = real
(
−j

∇IAS,i[k1, k2]

IAS,i[k1, k2]

)
, (7)

Dominant component analysis can be applied over different
scales and Combination of Scales (CoS) can be used to
generate AM-FM channel estimates:

ac,i, ϕc,i,∇ϕc,i, i = {low, medium, high}.

At every pixel, we select the filter that gives the maximum
instantaneous amplitude (IA). The dominant IA is given by
the P -th channel. We then select ac,P , ϕc,P ,∇ϕc,P as the
estimates associated with the dominant component.

C. Difference of Gaussians (DoG) Filterbanks

The DoG filter is created by subtracting two Gaussian
functions of different widths. The result is a band-pass filter
that removes high frequency components representing noise,
and also some low frequency components representing the
homogeneous areas in the image. It is assumed to be associated
with the edges in an image.

The DoG equation is as follows [12]:

DoG(x, y) =
1

2πσ2
exp(

−(x2 + y2)

2σ2
)−

1

2πκ2σ2
exp(

−(x2 + y2)

2κ2σ2
)

(8)

where σ2 is the variance, and κ is a constant multiplicative
factor. The DoG filterbank used in this study for AM-FM
analysis is given in Table I and plotted in Fig. 1. AM-FM
analysis was implemented as documented in equation (8).
The DoG AM-FM feature sets are given in Table II.

TABLE I: DoG filterbank setup where σ0 =
√
2/2 and κ =√

2 (plotted in Fig 1).

Scale σ κσ

1 8
√
2σ0 16σ0

2 8σ0 8
√
2σ0

3 4
√
2σ0 8σ0

4 4σ0 4
√
2σ0

5 2
√
2σ0 4σ0

6 2σ0 2
√
2σ0

7
√
2σ0 2σ0

8 σ0

√
2σ0

D. DoG Filterbanks and Histogram Based AM-FM Feature
Sets (see Table II)

Feature sets (FS1) were computed for all the scales of
multiscale DoG filterbanks and for each combination of scales
as follows: 8 bin histograms of instantaneous amplitude αc,i,



TABLE II: AM-FM Analysis Feature Sets

Feature Set Features Number
of Scales

Component
Selection

Combination of Scales Total Number
of FeaturesLow Medium High

FS1
αc,i 8 bins 4

- - - -
(8+4+4)×4=62

ϕc,i 4 bins 6 (8+4+4)×6=96
|∇ϕc,i| 4 bins 8 (8+4+4)×8=128

FS1cs
αc,i 8 bins

8 DCA VVL-VL L-ML-M MH-H-VHϕc,i 4 bins (8+4+4)×3=48
|∇ϕc,i| 4 bins

VVL: Very Very Low, VL: Very Low, L: Low, ML: Medium Low, M: Medium, MH: Medium High, H: High, VH: Very High.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: An 8 scale DoG filterbank in the frequency domain
based on Table I. Scales starting from: (a) Very Very Low
(VVL), (b) Very Low (VL), (c) Low (L), (d) Medium Low
(ML), (e) Medium (M), (f) Medium High (MH), (g) High (H)
and (h) Very High (VH).

4 bins histogram of instantaneous phase ϕc,i and 4 bins his-
togram of the magnitude of instantaneous frequency |∇ϕc,i|.
The 8 scale DoG filtenbank feature set (FS1cs) was computed
using a combination of scales as shown in Table II. For
each combination of scales, dominant component analysis was
applied.

E. Statistical Analysis

The features extracted were statistically analysed to select
significantly different features. A Mann-Whitney U-test was
used with the statistical significance set to 0.05.

F. The SVM Classifier

A Support Vector Machines (SVM) classifier was trained to
classify the feature sets (FS) investigated into two classes: 1)
asymptomatic plaques or 2) symptomatic plaques (the plaques
that caused stroke including transient ischemic attacks).

The SVM models were investigated using Gaussian radial
basis function (RBF) kernels k(xi, xj) = exp(−∥xi − xj∥2)
where xi and xj were data points; this was decided as the rest
of the kernel functions could not achieve satisfactory results.

For the classification performance, a 10-fold cross validation
method was used. The data were divided randomly into a
training set consisting of 90% of the cases, with the remaining
10% of the cases as an evaluation set.

III. RESULTS

DoG based AM-FM analysis was carried out as introduced
in section II-D. Four, 6 and 8 scale DoG filterbanks were used

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 2: Multiscale AM-FM analysis based on an 8 scales DoG
filterbank. Instantaneous amplitude features of FS1cs feature
set were derived from demodulations using combination of
scales and dominant component analysis (see Table II): (a)
Asymptomatic αlow, (b) Symptomatic αlow, (c) Histogram
αlow, (d) Asymptomatic αmedium, (e) Symptomatic αmedium,
(f) Histogram αmedium, (g) Asymptomatic αhigh, (h) Symp-
tomatic αhigh, (i) Histogram αhigh.

and the FS1 and FS1cs feature sets were computed (see Table
II). For the FS1cs feature set an 8 scale DoG filterbank was
used with a combination of scales and dominant component
analysis as given in Table I.

Multiscale AM-FM analysis based on the 8 scale DoG filter-
bank of Table I on an asymptomatic plaque and a symptomatic
plaque with the extracted AM-FM features for instantaneous
amplitude (IA) and instantaneous phase (IP), are illustrated
in Fig. 2 and Fig. 3 respectively. Analysis was carried out
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Fig. 3: Multiscale AM-FM analysis based on an 8 scales
DoG filterbank. Instantaneous phase features of FS1cs feature
set were derived from demodulations using combination of
scales and dominant component analysis (see Table II): (a)
Asymptomatic ϕlow, (b) Symptomatic ϕlow, (c) Histogram
ϕlow, (d) Asymptomatic ϕmedium, (e) Symptomatic ϕmedium,
(f) Histogram ϕmedium, (g) Asymptomatic ϕhigh, (h) Symp-
tomatic ϕhigh, (i) Histogram ϕhigh

using histogram based features with combination of scales and
dominant component analysis feature set (FS1cs), as shown
in Table II. The difference in the AM-FM histogram features
between the asymptomatic plaque and the symptomatic plaque
are shown.

Table III tabulates the classification results for the feature
sets (see Table II). When using FS1, the highest average clas-
sification accuracy was 74%, achieved using an 8 scale DoG
filterbank. The best overall average classification accuracy was
achieved for the FS1cs feature set and it was 75% with an
average sensitivity of 76% and an average specificity of 75%
when an 8 scale DoG filterbank with combination of scales
was used.

The overall classification accuracy is similar to what has
been achieved with standard texture features (e.g., [1]). Never-
theless, the achieved accuracy is slightly higher than what was
previously achieved with standard AM-FM Gabor filterbanks
(see [7]). We believe that this improvement is due to the perfect
rotation invariance of the DoG filterbank.

TABLE III: Classification results of asymptomatic versus
symptomatic carotid plaque ultrasound images using multi-
scale AM-FM analysis with DoG frequency sampling (for the
feature set description see Table II).

Scales Feature
Set Accuracy Sensitivity Specificity AUC

4
FS1

69 72 66 0.75
6 72 75 70 0.78
8 74 74 73 0.8

8 FS1cs 75 76 75 0.81

IV. CONCLUSIONS

The multiscale AM-FM analysis based on DoG filterbanks
and derived representations provided new feature sets, that
demonstrated successful classification of asymptomatic versus
symptomatic carotid ultrasound plaque images. This work gave
slightly higher classification accuracy when compared to other
studies carried out on the same problem using AM-FM [7]
feature sets extracted via Gabor filterbanks. Moreover, the
results of this study are similar to studies carried out based
on classical feature sets and clinical feature sets [1].
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