
Radar Based Humans Localization with Compressed Sensing
and Sparse Reconstruction

(Invited Paper)

Christian Eckrich∗†, Christian A. Schroth∗, Vahid Jamali† and Abdelhak M. Zoubir∗
∗Signal Processing Group, †Resilient Communication Systems

Technische Universität Darmstadt, Germany
∗{eckrich, schroth, zoubir}@spg.tu-darmstadt.de, †{christian.eckrich, vahid.jamali}@rcs.tu-darmstadt.de

Abstract—Localization and detection is a vital task in emergency
rescue operations. Devastating natural disasters can create environments
that are inaccessible or dangerous for human rescuers. Contaminated
areas or buildings in danger of collapsing can be searched by rescue
robots which are equipped with diverse sensors such as optical and radar
sensors. In scenarios where the line of sight is blocked, e.g., by a wall,
a door or heavy smoke or dust, sensors like LiDAR or cameras are
not able to provide sufficient information. The usage of radar in these
kinds of situations can drastically improve situational awareness and
hence the likelihood of rescue. In this paper, we present a method that is
used for radar imaging behind obstacles by utilizing a signal model that
includes the floor reflection propagation path in addition to the direct
path of the radar signal. Additionally, compressed sensing methods are
presented and applied to real world radar data that was recorded by
a Stepped Frequency Continuous Wave (SFCW) radar mounted on a
semi-autonomous robot. The results show an improved radar image that
allows the clear identification of persons behind obstacles.

Keywords—sparse reconstruction, compressed sensing, multipath ex-
ploitation, SFCW radar, localization, semi-autonomous robot

I. INTRODUCTION

The utilization of radar in locating humans in emergency sce-
narios is of high importance when the visibility is restricted, and
optical sensors, e.g., light detection and ranging (LiDAR), RGB- or
infrared cameras, cannot be applied. Typical obstacles that impact
the line of sight are walls, doors or heavy smoke. In a scenario
where humans must be found in an area that is inaccessible to
rescuers, the usage of rescue robots (such as the semi-autonomous
emergenCITY robot ’Scout’ shown in Fig. 1) is advantageous [1], [2].
It allows to reliably navigate in environments that are contaminated
or buildings that are in danger of collapsing after a natural disaster.
Rescue robots can be equipped with a variety of different sensors,
including radar sensors that, unlike optical sensors, are applicable
even when the line of sight is blocked. Radar imaging through an
obstacle, like a wall, has been investigated in [3], [4] and [5], while
the authors in [6] proposed an iterative target detection scheme. The
detection performance depends on the characteristics of the utilized
radar system, which is discussed and evaluated in [7]. The authors in
[8] and [9] used a Stepped Frequency Continuous Wave (SFCW)
radar system with a large antenna aperture to detect and classify
targets behind walls. The suppression of ghost images resulting from
signal reflections due to side walls and wall ringing effects has been
investigated in [10].

Compressed sensing (CS) is a technique that exploits the sparsity
of a signal to reconstruct it from a limited number of measurements
[11]. It can reduce the computational cost and fasten the collection of
radar data. This is necessary for real world applications when lives
are at risk and the emergenCITY robot has limited time for the search
of missing persons. In this paper, we use the robot’s onboard Walabot

Fig. 1: emergenCITY robot ’Scout’

multiple-input multiple-output (MIMO) radar developed by vayyar1

for radar imaging and humans localization. We apply compressed
sensing methods and utilize the signal components that result from
reflections with the floor in order to enhance the three-dimensional
(3D) image quality. A sparsifying base utilizing the 3D Dual-Tree
Complex Wavelet Transform (DT-CWT) models the spatial extension
of the human body and allows relaxing the unrealistic point target
assumption [11]. The presented results are based on real world data
captured by the radar of the emergenCITY robot in an experiment that
emulates different radar imaging scenarios of various persons behind
obstacles in different postures and locations.

The remainder of this paper is organized as follows. In Sections II
and V-A, the signal model is introduced and fundamentals of radar
imaging are briefly revisited. The compressed sensing approach is
shown in Section III and the group sparse problem formulation is
presented in Section IV. Sections V and V-B give an overview of the
setup of the conducted experiments and present the obtained results.
Finally, conclusions are drawn in Section VI.

II. SIGNAL MODEL

The 3D-space, observed by an SFCW radar, is partitioned into
G = GxGyGz grid cells, where Gx, Gy and Gz are the number of
grid cells in each spatial dimension. The position of each grid cell is
given by g = [gx, gy, gz]

⊤. Let ex, ey , and ez denote the standard
bases for the 3D space. The radar transmit and receive antennas are
distributed in the plane spanned by ex and ey at positions mtx and
mrx, respectively. The floor is located at y = 0 and spanned by ex

and ez . A sketch of the radar setup can be seen in Fig. 2.

The transmit antennas radiate (each at a time), a stepped fre-
quency signal with frequency steps fk = f0 + k∆f for k =
0, . . . ,K−1. During the transmission period of each transmit antenna,
all receive antennas record the returning signal2. In other words, we
record a signal for each pair of transmit and receive antennas. It is
assumed that the radar scene is stationary between the activation of

1https://vayyar.com
2The described radar scanning protocol is pre-programmed by the used radar

and hence cannot be changed in our experiments.979-8-3503-3959-8/23/$31.00 ©2023 IEEE
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Fig. 2: Global coordinate system of the observed space.

the first and last transmit antenna. The combination of each transmit
antenna and each receive antenna results in M antenna pairs, each
corresponding to a received fast time signal. The signal strength can
be modelled by the signal energy σ = [σ0, . . . , σG−1]

⊤ ∈ CG×1

reflected from G grid cells. The reflected signal from each grid
cell is allocated a time shift τgm due to the duration needed for
the electromagnetic (EM) wave to travel from the transmit antenna
to the reflecting grid cell g and back to the receive antenna. The
summation over the signal originating from each grid cell g leads
to the construction of the total receive signal for antenna pair m
and frequency step k [12]. However, in many cases, the returning
signal is not limited to the direct path between the grid cell and the
radar. Multipath propagation is a common observation in real radar
recordings. In particular, the reflection from the floor is one of the
dominant multi-path components and hence is explicitly accounted for
in our signal model. This leads to the introduction of a mirror image
indicated by σ

′
= [σ

′
0, . . . , σ

′
G−1]

⊤ ∈ CG×1 and the corresponding
time shift τ

′
gm that represents the delay via the reflection from

the ground. The total received signal including the floor multipath
propagation can be expressed as

z(k,m) =

G−1∑
g=0

(
σg e

−j2πfkτgm + σ
′
g e

−j2πfkτ
′
gm

)
+ εkm. (1)

The entries of the measurement vector z ∈ CKM×1 are composed
of z(k,m) as

z =vec ([z0, . . . , zM−1]) , with (2)

zm = [z(0,m), . . . , z(K − 1,m)]
⊤ ∈ CK×1 (3)

for m = 0, . . . ,M − 1,

where vec(·) represent a vectorizing operator that stacks the columns
of a matrix into a vector. In matrix notation, z can be expressed as

z = Ψσ +Ψ
′
σ

′
+ ε, (4)

where Ψ,Ψ
′ ∈ CKM×G are the direct path and the floor path prop-

agation models and ε = [ε0, . . . , εKM−1]
⊤ ∈ CKM×1 represents

additive white Gaussian noise and clutter components. The image
vectors σ,σ

′ can be seen as a 3D map of the scene observed by
the radar. The objective is to reconstruct the map based on the radar
recordings z and detect the location of humans. The time delay for the
direct path correlates with the summation of the Euclidean distance
between the position of the transmit antenna mtx and the position of
the grid cell g, and the Euclidean distance between the position of
the grid cell g and the position of the receive antenna mrx. The time
delays are given by

τgm =
1

c0
||mtx − g||2 +

1

c0
||mrx − g||2 and (5)

τ
′
gm =

1

c0
||mtx − g||2 +

1

c0

∥∥∥([1,−1, 1]
⊤ ⊙mrx

)
− g

∥∥∥
2
, (6)

where ⊙ is the Hadamard multiplication and c0 is the speed of light
in air. The path that leads to τ

′
gm is composed of the direct path

between mtx and g, and the path between g and the virtual receive
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Fig. 3: Refraction of the EM wave at the surface of a medium.

antenna whose position is mirrored at the floor. The power via the
path mtx-floor-g-mrx is expected to be much weaker than the direct
path mtx-g-mrx, while both are impinging on the receive antennas
from the same angles. Therefore, we neglect mtx-floor-g-mrx and
only consider mtx-g-floor-mrx in addition to the direct path.

A. Positioning Error Caused by Obstacles

The path between the radar and the object can be obstructed by a
medium with permeability εr > 1 and width d, e.g., a wall or a door.
For simplicity, the medium is orientated in parallel to the y-x plane
and the antenna array. The propagating EM wave is diverted towards
the surface normal on entry from air to the medium. Likewise, exiting
the medium, the EM wave is diverted away from the surface normal.
In order to account for the resulting positioning error, the obstacle’s
permeability and thickness has to be known. The wave refraction at
the surface can be described by Snell’s law,

sin(θA)

sin(θW)
=

√
εr, (7)

where θA and θW are the angles spanned between the surface’s normal
and the EM wave’s path during outside and inside the medium, as
shown in Fig. 3 [12]. Due to the refraction at the surface of the
medium and the influence of εr on the EM wave’s propagation speed,
the grid cell g is observed by the radar to be at the position of g

∗.
Hence, Eqs. (5) and (6) have to be updated with g → g

∗. The first
position correction can be expressed as a shift in the x-y plane along
the direction in which θW and θA opens. It is given by

∆x,y = d (tan(θW)− tan(θA)) . (8)

The second correction results from the elongated path and the reduced
speed of light in a medium with εr > 1 and is given by

∆τ = d

( √
εr

cos(θW)
− 1

cos(θA)

)
. (9)

III. COMPRESSED SENSING

In many cases, it is advantageous to reduce the number of
recorded samples that are used to reconstruct the image vector σ
and the corresponding 3D map. Thus, the computational complexity
is reduced, and the estimation can be conducted faster. In general,
the radar scene can be considered to be mostly empty. Only sporadic
objects that are located in the scene lead to a peak in the image vector.
Under this assumption σ and σ

′ can be considered to be sparse, e.g.,
the image vector has only Gs ≪ G non-zero entries. CS theory
states that σ and σ

′ can be reconstructed using only a subsection of
measurement observations sampled below the Nyquist rate. In real
world application, the radar system would be adapted to record only
KdMd ≪ KM data points. However, in the case of pre-recorded
radar data, the introduction of a downsampling matrix Φ is necessary.
For the design of Φ, it is important that the significant part of the full
image vectors σ and σ

′ are not in the null space of Φ. Using stepped
frequency radar, an efficient sampling scheme has proven to be a
binary downsampling matrix Φ ∈ {0, 1} of size KdMd ×KM [13].
The unstructured downsampling matrix is constructed by randomly



choosing without replacement, denoted by ∈R, a random subset
Fsub ∈R {f0, . . . , fK−1} from the set of all frequencies so that the
size of the subset |Fsub| = Kd. Likewise, a random subset of antenna
pairs is chosen as Msub ∈R {m0, . . . ,mM−1} with |Msub| = Md,
where | · | is the cardinality of a set. Each row of Φ has only one
entry that is equal to 1 while all the other entries are 0. The non-zero
entry of each row is the index of each combination between Fsub and
Msub. The resulting model of the reduced measurement vector z̄i for
the i-th realization of the random downsampling matrix Φi is given
by

z̄i = Φiz + ε

= Φi(Ψσ +Ψ
′
σ

′
) + εi, (10)

where εi is the noise of the sampled data. Because σ and σ
′ are sub

images that are based on the same observed radar scene, the model
expression can be condensed by collecting both sub image vectors in
one tall image vector σ̃. The resulting model is given by

z̃ = Φ̃
[
ΨΨ

′] [ σ
σ

′

]
+ ε̃ = Φ̃Ψ̃σ̃ + ε̃, (11)

where Φ̃ is a realization of the random downsampling matrix. In the
presented model, the assumption has been made that σ is sparse by
resembling point like objects. However, σ underlays some structure
if the objects are extended in space. A sparsifying basis Ψw for that

σ = Ψwx and σ
′
= Ψwx

′
, (12)

has to be found. A suitable approach is a basis composed by using
the 3D dual-tree complex wavelet transform (DT-CWT) [11]. The
vector containing the wavelet coefficient x = [x0, . . . , xG−1]

⊤

remains sparse, even for extended objects. Comparable to Eq. (11),
the wavelet coefficients x can be stacked to form a tall coefficient
vector x̃ = vec

([
x,x

′]), leading to the signal model

z̃ = Φ̃Ψ̃wx̃+ ε̃. (13)

IV. GROUP SPARSE PROBLEM FORMULATION

The objective is to reconstruct the image vector σ̃ by utilizing the
reduced observation vector z̃. In order to promote sparse solutions, the
ℓ1 norm is used as a penalty term. Note, that σ̃ incorporates multiple
versions of the same underling image observed through different
paths. Therefore, the promotion of sparsity should account for the
grouped structure of σ̃. This can be accomplished by the ℓ2,1 norm,
defined as

||σ̃||2,1 =

G−1∑
g=0

√
(σg)

2
+ (σ

′
g)

2
. (14)

For noiseless observations, this leads to the reconstruction problem

σ̂ = argmin
σ̃

||σ̃||2,1 s.t. z̃ = Φ̃Ψ̃σ̃. (15)

Using the Lagrange multiplier and considering noise, the convex
optimization problem can be formulated as

σ̂ = argmin
σ̃

1

2
||z̃ − Φ̃Ψ̃σ̃||22 + λ||σ̃||2,1, (16)

where λ ∈ R+ is a regularization parameter that balances between
the sparsity of the solution and the fidelity of the measurements.
Likewise, the group sparse reconstruction problem using the complex
3D DT-CWT can be expressed as

x̂ = argmin
x̃

1

2
||z̃ − Φ̃Ψ̃wx̃||

2
2 + λ||x̃||2,1, (17)

where

||x̃||2,1 =

G−1∑
g=0

√
(xg)

2
+ (x

′
g)

2
. (18)
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Fig. 4: Positions of the Walabot radar antennas in the global coordi-
nate system from Fig. 2 with the radar’s PCB in the background.

P1P2 P3

-2 -1 0 1 2

Crossrange [m]

-1

-0.5

0

0.5

1

H
e

ig
h

t 
[m

]

Floor

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Radar’s perspective

P1

P2

P3

-2 -1 0 1 2

Crossrange [m]

0.5

1

1.5

2

2.5

3

3.5

D
o

w
n

ra
n

g
e

 [
m

]

0

0.2

0.4

0.6

0.8

1

(b) Bird’s eye view

Fig. 5: DSBF 3D map, recording with 3 persons.

Problems (16) and (17) can be solved using, e.g., the SpaRSA
algorithm [14].

V. EXPERIMENTS AND RESULTS

In an experiment, the onboard Walabot radar of the emergenCITY
robot ’Scout’ was used to record different radar scenes of sitting or
laying persons. In each scene, 1-5 persons were located at an arbitrary
location in front of the robot with a maximum radial distance of
3.5m. The setup allowed the introduction of a 17.2 cm thick brick
wall or a 2.5 cm wooden door between the radar and the persons
[15]. The Walabot radar is a compact MIMO SFCW radar with 18
receive antennas, 4 of which can also function as transmit antennas.
The dimensions and the positioning of the antennas is shown in Fig.
4. In this experiment the transmit antennas 1, 4, 17 and 18 are used
while the receive signal is captured by receive antennas 2, 3, 6, 7,
10, 11, 14 and 15. This results in M = 32 transmit-receive antenna
combinations. One radar sweep consists of K = 137 frequency steps
ranging from 6.3 GHz to 8 GHz. The raw radar signal can include
different clutter components, e.g, reflections from the wall, door
or other stationary objects located in the observed space. However,
due to the person’s breathing, the stationary clutter signal can be
removed by using a moving average filter with a length 5seconds,
while maintaining the signal originating from the persons.

A. Delay and Sum Beamforming

By applying a conventional Delay and Sum Beamformer (DSBF),
the received signal can be processed to steer towards each grid cell
g. The resulting complex image r(g) is given by

r(g) =
1

KM

M−1∑
m=0

K−1∑
k=0

z(k,m)e
j2πfkτgm (19)

and incorporates only the direct path between grid cell g and antenna
m. The result can be seen as a 3D cost function, where the peaks
indicate the origin of the reflected signal. In Fig. 5, the results of
the DSBF are shown for a radar scene with three persons. The true
locations for persons P1, P2, and P3 are indicated by the black circles.
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Fig. 6: DSBF of scene with four persons in free space.
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(a) Image reconstruction using point
target assumption.
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CWT.

Fig. 7: Bird’s eye view of reconstructed 3D image with λ = 0.4.
Recording of four persons in free space.

Fig. 5b depicts the bird’s eye view of the scene. In Fig. 5a, the result
is shown from the radar’s perspective. The grid has been chosen
to extend beneath the floor, which is located at y = 0. There are
strong clusters of reflected signal energy that seem to be originating
from below the floor. However, they relate to the signal received via
the floor multi path. The resulting radar image is populated with
numerous peaks. Only the three most prominent ones relate to a
present person.

B. Results of the Proposed Method

In the sequel, the results using the proposed methods are shown
and compared to the DSBF solution. Fig. 6 depicts the bird’s eye
view of the normalized 3D radar image resulting from the DSBF.
The true positions of persons P1-P4 are marked by the black circles.
It should be noted that person P2 is in a lying position whereas the
other persons are sitting. Hence, P2 occupies a larger area in contrast
to the sitting persons. In Fig. 7 the resulting bird’s eye view of the
normalized 3D radar image using the proposed method from Section
IV is shown while utilizing all 32 antenna pairs and all 137 frequency
steps. By evaluating different values for the regularization parameter
λ, the value that achieves the best balance between image sparsity
and measurement error was 0.4. Fig. 7a depicts the results based on
the point target assumption from Eq. (16). Clusters have formed at the
positions in which the persons were located, while the remaining area
indicates no receive signal energy. The number of coefficients needed
to represent the four persons in the 3D radar image is much higher
than for the results depicted in Fig. 7b which utilize the DT-CWT to
model the extended nature of persons in space. The depicted radar
image is a solution of Eq. (17). Both methods found a sparse solution
that is able to depict all present persons and, in contrast to the DSBF,
suppress unwanted clutter components. This leads to an image that
indicates the position of present persons in an undisturbed way. The
degree of compressed sensing can be measured by the compressing
ratio RCS =

MdKd
MK

, where Md = ⌈αM⌉ and Kd = ⌈αK⌉. The
percentage of used antenna pairs and frequency bins is controlled by
α. Hence, the ratio between Kd and Md is approximately constant.
Fig. 8b depicts the resulting bird’s eye view of the normalized 3D
radar image using the DT-CWT approach in a scenario of one person
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(b) Radar imaging (DT-CWT).

Fig. 8: Recording of one person behind door. Bird’s eye view of 3D
image with λ = 0.6 and RCS = 0.5.
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wall with λ = 0.6 and RCS = 0.5.
A sketch of the wall’s position is
given in red.

sitting behind a wooden door at a distance of 1.5m and an angle
of −45

◦. The Regularization parameter λ has been set to 0.6 and
RCS = 50%. The result using the DSBF for the same scene is given
in Fig. 8a. The structural similarity index measure (SSIM) describes
the structural similarity between two images. Using the SSIM metric,
the resulting radar image for different RCS has been evaluated. Fig.
9 shows the median SSIM value of 10 measurements with varying
RCS. It can be seen that decreasing the ratio beyond 30% degrades
the radar image quality drastically. However, utilizing between 50%
to 40% of the radar data is a good balance between compression and
image quality. This allows the computation time to be reduced and
enable fast radar imaging that can be used in emergency scenarios.
Fig. 10 depicts the 3D radar image of a person behind a wall at

a distance of 2.5m. The regularizing parameter λ was set to 0.8
and only 50% of the available data was used. The depicted shape
represents the isosurface of the pixels that exceed a threshold of 0.2.
The wall and the position of the radar is illustrated in red.

VI. CONCLUSION

The application of CS methods in combination with a sparsifying
DT-CWT basis has been demonstrated using experimental radar
recordings of multiple persons behind obstacles. It has been shown
that the compact Walabot radar with a limited antenna aperture is
able to generate a precise image of the space behind the obstacle
by utilizing the floor propagation multi path in addition to the direct
path.
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