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Abstract—The objective of this study was to implement an 

explainable artificial intelligence (AI) model with embedded rules 

to assess Multiple Sclerosis (MS) disease evolution based on brain 

Magnetic Resonance Imaging (MRI) multi-scale lesion evaluation. 

Amplitude Modulation-Frequency Modulation (AM-FM) features 

were extracted from manually segmented brain MS lesions 

obtained using MRI and were labeled with the Expanded 

Disability Status Scale (EDSS). Machine learning models were 

used to classify the MS subjects with a benign course of the disease 

and subjects with advanced accumulating disability. Rules were 

extracted from the selected model with high accuracy and then 

were modified to perform argumentation-based reasoning. It is 

demonstrated that the proposed explainable AI modeling can 

distinguish MS subjects and give meaningful information to track 

the progression of the disease. Future research will examine more 

subjects and add new feature sets and models. 

Keywords—Multiple Sclerosis; Brain MRI; Lesions; AM-FM 

features; Classification analysis; Rule extraction; Explainable AI. 

I. INTRODUCTION 

One of the greatest challenges for effective personalized 
treatments in Multiple Sclerosis (MS) is the difficulty to predict 
the disease evolution due to its heterogeneous nature. 
Explainable artificial intelligence (AI) can help in detecting and 
monitoring disease progression and providing transparent and 
understandable explanations both to physicians and patients.  
As MS is a complex autoimmune disease of the central nervous 
system, several lines of evidence indicate that both genetic and 
environmental variables may have a major impact in 
determining the vulnerability to the disease, even if the actual 
origin of MS is not entirely understood [1], [2]. MS is mainly 
characterized by the appearance of lesions in the white matter 
(WM) which show inflammatory activity, myelin damage, and 
axonal loss [1]. The MS lesions are visualized by magnetic 

resonance imaging (MRI) [3], and evaluated by expert 
neurologists following the McDonald criteria [4]. The clinical 
disability is assessed at each MRI scan using the expanded 
disability status scale (EDSS) [5].  

Previous studies [6]-[8] showed that feature analysis of MS 
lesions and more specifically AM-FM features can be used to 
assess the evolution of MS disease. Furthermore, another study 
[9] took one step forward in the assessment of the disease with 
the extraction of quantitative data from the lesion features, in 
the form of rules, using machine learning models. The objective 
of this study was to investigate the usefulness of explainable AI 
in the assessment of MS disease based on brain MRI multi-scale 
lesion evaluation. 

II. METHODOLOGY 

The proposed implemented explainable AI model consisted 
of six main processing steps, including MRI acquisition, 
preprocessing, segmentation, feature extraction and selection, 
classification analysis, and argumentation-based reasoning. 
Below is a detailed analysis of each step. 

A. MRI acquisition 

A total of 38 subjects (17 males, and 21 females) with a 
clinically isolated syndrome (CIS) of MS were investigated.  
MRI scans were carried out at the initial stage of the disease 
(Time0) and after 6-12 months (Time6-12). The transverse MRI 
images used for analysis were obtained using a T2w turbo spin-
echo pulse sequence (repetition time=4408 ms, echo time=100 
ms, echo spacing=10.8 ms). The reconstructed image had a 
slice thickness of 5 mm and a field of view of 230 mm with a 
pixel resolution of 2.226 pixels per mm. Standardized planning 
procedures were followed during each MRI examination. The 
MRI images were acquired using a 1.5 T whole-body Philips 
ACS NT MR imager. The EDSS score of each subject was 



estimated by the neurologist (co-author, M. Pantzaris), at two, 
five, and ten years after the initial diagnosis to quantify future 
disability progression. In this paper, we use MRI images at 
Time0 and their interrelation with the EDSS score at year ten. 

B. Preprocessing 

The brain MRI images were intensity normalized between 
the grayscale values of 0 and 255 using histogram 
normalization as documented in [6]-[8], where all additional 
details about the algorithm may be found. All detectable brain 
lesions were identified and segmented by the experienced MS 
neurologist. 

C. Segmentation 

The segmentation was performed manually in a blinded 
manner without the possibility of identifying the subject, the 
time-point of the exam, or the clinical findings. The selected 
points and delineations were saved to be used for feature 
extraction and analysis. In addition, the MS subjects were 
separated into two different groups (i.e. G1: EDSS≤3.5 and G2: 
EDSS>3.5). The reason for selecting an EDSS cut-off point of 
3.5 is that for EDSS>3.5, the physician can assess neurological 
signs, meaning that the patient starts accumulating disability. 
Thus, any patient having an EDSS≤3.5 can be regarded as 
having a rather benign course of the disease. 

D. Feature extraction and selection 

Over each segmented MS lesion, a multiscale AM-FM 
decomposition was computed using the: 
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where M denotes different scales, � = 1, 2, 3 correspond to the 

low, medium, and high scales, 	
��, �� denote the instantaneous 

amplitude (IA) components, and �
��, �� denote the 

instantaneous phase components. It is noted that FM components 

cos �
��, �� describe fast changing texture components. For 

each AM-FM component, the associated instantaneous 

frequency (IF): ∇�
��, �� was estimated as described in [10].  

The bandpass filters were grouped into low (LF), medium 

(MF), and high (HF) components. For sampling at 2.226 

pixels/mm, multiplying the discrete spatial frequencies by 

2.226/�2�� converts them (component wise) into cycles per 

millimeter. To see this, note that the �-frequency produces 

samples of 1, −1, 1, −1, … at 0.5 cycles/pixel. For the low 

frequencies, we have discrete frequencies from the minimum IF 

magnitude of (0, �/8) corresponding to 0.1391 cycles/mm, and 

to a maximum IF magnitude of ��/4, �/4� at 0.3935 

cycles/mm. For the medium frequencies, we have the minimum 

at (0, �/4� corresponding to 0.2782 cycles/mm, and a maximum 

at ��/2, �/2� corresponding to 0.7870 cycles/mm. For the high 

frequencies, we have the minimum frequency at �0, �/2� 

corresponding to 0.5565 cycles/mm, and a maximum of ��, �� 

at 1.5740 cycles/mm. 
For each lesion, for each frequency-scale band, the median 

value from 32-bin histograms of the dominant IA, IF magnitude 
(|IF|), and IF angle components were computed. The IF 

magnitude estimates were then normalized to cycles per 
millimeter, providing a physically meaningful interpretation of 
the texture measurements.  

Before performing the classification analysis, the features 

were preprocessed using the scikit-learn [11], a machine learning 

library in Python. More specifically, min-max scaler was used to 

normalize only the IA features between the values 0.0 and 1.0. 

K-bins discretizer was also applied to discretize the values of all 

the features in intervals, called bins. A fixed number of 3 bins 

that has the same number of observations to each bin (quantile 

strategy) was defined. The bins were encoded using the ordinal 

method, where 0 refers to ‘Low’, 1 refers to ‘Medium’ and 2 

refers to ‘High’. In addition, the select k-best method was used to 

select 5 of the features according to the highest score which was 

defined by computing the analysis of variance (ANOVA), F-

value. 

E. Classification analysis 

Classification modeling was developed to predict EDSS of 
MS subjects with EDSS≤3.5 (G1) versus those with EDSS>3.5 
(G2) based on the extracted lesion AM-FM features. The 
classification models were implemented in Python using the 
scikit-learn library [11]. Different classifiers were used, such as 
decision tree (DT), random forest (RF), gradient boosting (GB), 
k-nearest neighbors (kNN), gaussian naïve Bayes (Gaussian 
NB), and support vector machine (SVM). As shown in TABLE 

I, data were split into a training and an evaluation group, using 
80% for the training and 20% for the evaluation set, and were 
re-arranged to have an equal size of the two classes on the 
evaluation set. The synthetic minority over-sampling technique 
(SMOTE) [12] was applied during the model training to 
improve the performance of the model and avoid overfitting. 
SMOTE creates new samples for the minority group of the 
model (G2) with the same statistical properties. Applying the 
over-sampling technique on the training set, G1 and G2 were 
generated having the same number of subjects. 

 

 
 
Furthermore, the grid search method was performed to find 

the optimal combination of hyper-parameters of each model 
[11], based on a stratified 10-fold cross-validation. Overfitting 
of data by cross-validation was avoided. The classification 
analysis performance in this study was based on the average 
evaluation set performance for 10 runs. The following 
evaluation metrics were used: 
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TABLE I. DATA DISTRIBUTION OF THE CLASSIFICATION MODELS 

Data sets Patients 
EDSS≤3.5 

(G1) 

EDSS>3.5 

(G2) 

Initial 38 26 12 

Training 30 21 9 

Over-sample training 46 23 23 

Evaluation 6 3 3 

G1, G2: Subjects with 0.0≤EDSS≤3.5 and 3.5>EDSS≤10.0, respectively.
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where, TP and TN denote the number of true positive and true 
negative instances that are correctly classified, and FP and FN 
indicate the number of misclassified false positive and false 
negative instances, respectively.  

By selecting models with high accuracy, lesion features’ 
rules were extracted during the model training using the TE2rules 
algorithm [13], a novel approach to convert a tree ensemble 
(TE) for binary classification to a rule list (RL). This algorithm 
is characterized by high fidelity, as it generates rules from leaf 
nodes of individual trees and captures the interactions between 
trees of TE. 

F. Argumentation-based reasoning 

Gorgias is a structured argumentation framework and was 
used to couple learning with reasoning [14]. In detail, 
arguments are constructed using a basic argument scheme to 
link a set of premises with the claim of the argument. The 
premises are a set of conditions describing a scenario and the 
claims are options. Two types of arguments are constructed 
within a Gorgias argumentation theory: object-level arguments 
and priority arguments. Object-level arguments are literal 
claims and can support contradictory claims where arguments 
attack each other. Priority arguments express a local preference 
between arguments and their purpose is to give relative 
strength, tightening the attack relation between them. 

Gorgias Cloud Error! Reference source not found. is an 
implemented platform that offers argumentation as a service 
and was used to visualize the rule tabulation as an internal 
explanation and the application-level explanation. Gorgias can 
represent the knowledge by describing the application in terms 
of object-level arguments. Explanation in a physical language 
is the final output of the model to provide understandable 
information both to the experts and to the patients. 

III. RESULTS 

A. Classification analysis 

The proposed models were trained and evaluated for the 
lesion features of the data at the initial stage of the disease 
(Time0). TABLE II tabulates the results of the evaluation metrics 
for model classification based on the evaluation set. It is shown 
that the AM-FM features can be used to differentiate subjects 
with a benign course of the disease (EDSS≤3.5) and subjects 
with advanced accumulating disability (EDSS>3.5), achieving 
an average accuracy (ACC) of 75%. 

 
 

A RL was generated from a selected GB model, which 
achieved high accuracy at training (ACC=98%), using the 
TE2rules algorithm. TABLE III shows an example of the rule 
extraction. 

 

 

B. Argumentation-based reasoning 

Applying Gorgias’ argumentation theory, object-level and 
priority arguments were constructed. Object-level arguments 
were the selected rules extracted from the classification models 
which were modified to have the syntax of the logic 
programming language, Prolog. Priority arguments were 
determined by prioritizing the object-level arguments. Gorgias 
Cloud was used to visualize the explanations of the predicted 
disability in MS. An example of a scenario is illustrated in 
TABLE IV, providing the input and output of Gorgias Cloud as 
well as the explanation in a physical language. 

 

TABLE II. MS LESION MODEL EVALUATION RESULTS BETWEEN THE TWO 

DIFFERENT GROUPS (EDSS≤3.5 VS EDSS>3.5 AT YEAR 10) AT TIME0 

AVERAGED AT 10 RUNS 

Classifiers ACC SEN SPE PR REC 

DT 0.72 0.82 0.71 0.60 0.82 

RF 0.73 0.91 0.70 0.57 0.91 

GB 0.75 0.83 0.77 0.63 0.83 

kNN 0.73 0.93 0.69 0.53 0.93 

Gaussian NB 0.73 0.81 0.75 0.67 0.81 

SVM 0.75 0.90 0.73  0.60 0.90 

ACC: Accuracy, SEN: Sensitivity, SPE: Specificity, PR: Precision, REC: 
Recall, DT: Decision Tree, RF: Random Forest, GB: Gradient Boosting, 
kNN: k-nearest neighbors, NB: Naïve Bayes, SVM: Support Vector 
Machine. 

TABLE III. AN EXAMPLE OF GB RULE EXTRACTION USING TE2 RULES 

Rules Group 

IF (amplitudeHF = Medium OR High) AND  

(amplitudeLF = Medium OR High) AND 

(angleHF = Low OR Medium) 

G1 

IF (amplitudeMF = Low OR Medium) AND  angleHF = High 

AND magnitudeMF = High 

G1 

IF amplitudeHF = High AND (angleHF = Low OR Medium) G1 

IF amplitudeLF = High AND amplitudeMF = High G1 

IF (amplitudeLF = Medium OR High) AND  

amplitudeMF = Low AND (angleHF = Low OR Medium) 

G1 

ELSE G2 

G1, G2: Subjects with 0.0≤EDSS≤3.5 and 3.5>EDSS≤10.0, respectively, 
HF: High Frequency, LF: Low Frequency, MF: Medium Frequency. 



 

IV. DISCUSSION 

The objective of this study was to investigate the usefulness 
of explainable AI in the assessment of MS disease based on 
brain MRI multi-scale lesion evaluation. The main findings 
showed that the implemented explainable AI model can 
differentiate MS subjects with an EDSS≤3.5 from those with an 
EDSS>3.5 at year ten of the disease (ACC=75%), and provide 
explanations with high fidelity based on the TE2rules algorithm 
to follow up the disease evolution based on AM-FM features 
extracted from lesions at the baseline (Time0). 

Previous studies from our group investigated the analysis of 
AM-FM features focused on MS disease using brain MRI 
images. More specifically, Loizou et al. [7] suggested that AM–
FM characteristics succeeded in differentiating between lesions 
and WM tissue (normal and normal-appearing). SVM classifier 
was used to differentiate subjects with an EDSS≤2 from those 
with an EDSS>2, combining different scales of frequency and 
achieving a correct classification score (CC) of 86%. In another 
recent study, Loizou et al. [8] proposed a methodology for the 
early detection of AM-FM features that can be used to predict 
the severity of MS disease. The classification was performed to 
differentiate subjects with an EDSS≤3.5 from those with an 
EDSS>3.5 at year ten of the disease, including both texture and 
AM-FM lesion features and achieving a CC=94%. In addition, 
a preliminary work from our group studied the rule extraction 
in the assessment of MS disease focusing on MS lesion texture 
features [9]. There were a few other studies reported in the 
literature focused on MS disease which explained the decision 
of the implemented convolutional neural network (CNN) using 
attribution methods in heatmaps [15], [17] and Shapley additive 
explanations (SHAP) plots to show the feature importance of a 
machine learning model [18]. However, there is no other study 
reported in the literature that has implemented an explainable 
AI model which provides explanations in the form of rules 
based on AM-FM feature analysis of the MS lesions. 

V. CONCLUDING REMARKS 

Personalized treatment of MS disease is a challenge in the 
medical domain as the cause of MS remains opaque. The 

proposed explainable AI model aims to assist physicians in the 
MS assessment and follow-up of disease evolution. Future work 
will include further feature sets and incorporate models based 
on sequential MRI scans at different time points of image 
acquisition. The proposed methodology should also be 
evaluated on more subjects in a future study. 
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TABLE IV. AN EXAMPLE OF A SCENARIO USING GORGIAS CLOUD 

input 

amplitudeHF(p20, Medium). amplitudeLF(p20, High). 
amplitudeMF(p20, High). angleHF(p20, High). 
magnitudeMF(p20, Low). 

output 

prove([lowEDSS(p20)], InternalExplanation). 

Solution 1 

Internal Explanation: [c4(p20),pr4(p20),r3(p20)], 

Application Level Explanation 

The statement "lowEDSS(p20)" is supported by: 

- "amplitudeLF(p20,High)" and "amplitudeMF(p20,High)" 

This reason is : 

- Stronger than the general reason of supporting 

"highEDSS(p20)" 

The patient p20 is predicted with low disability as the 
instantaneous amplitude of low frequency is High and the 
instantaneous amplitude of medium frequency is High, and 
this reason is stronger than the general reason supporting 
the opposite prediction of high disability. 

HF: High Frequency, LF: Low Frequency, MF: Medium Frequency. 


