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Abstract—We propose the Heterogeneity-Stratified Bootstrap
(HSBoot), a stratification method that gives higher resampling
probabilities to the sample points in the less homogeneous
regions. We demonstrate its advantage in the case of training
a detector by oversampling the under-represented class in an
imbalanced data set. We took a case study of a spoiled food
detector in form of an electronic nose. The performance metrics
were calculated on the out-of-bag test set as well as on measure-
ments collected from another sensor.

Index Terms—Oversampling, Bootstrap, Out of Bag Bootstrap,
Detection, Classification, IoT

I. INTRODUCTION

It is often the case that the class distribution in a dataset is
not equal. The learning process to develop effective decision
boundaries to support the decision-making process is called
imbalanced learning [12]. Some machine learning algorithms
such as naive Bayes classifier [8, Chapter 4], decision trees
[10], quadratic discriminant analysis [7], and neural network
[2] are often biased towards the majority classes than the
minority target class, such that there is a higher misclassifica-
tion rate in the target instances [9]. Using a balanced training
set may help. This may be created with an artificially equal
class distribution by oversampling the instances in the minority
class.

The simplest oversampling method is by randomly du-
plicating instances in the minority class [11]. Other tech-
niques include the Synthetic Minority Oversampling Tech-
nique (SMOTE) [4] and its variations [6], the Adaptive syn-
thetic sampling approach for imbalanced learning (ADASYN)
[9], and data augmentation [18].

In this paper, we propose an oversampling method based
on the stratified resampling with replacement, or stratified
bootstrapping. It is well known that stratification reduces
variance [15]. In regression problems, the stratified bootstrap
was proven to be robust against outliers [13]. The proposed
stratification is not only done based on the class labels but also
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the heterogeneity in the feature space. The proposed method
is applied to train a spoiled food detector.

Anosmic or visually impaired people may fail to recognise
spoiled food in their fridge or pantry. A smart detector that can
be trained to recognise such hazards is needed. Intelligently
choosing a method to train the algorithm may reduce depen-
dencies on the complexity and the amount of data collected.
IoT devices do not always support collection of long data
segments. Bootstrap techniques help in estimating statistical
characteristics of interest in the case of limited samples [19]–
[21].

The measurements in this study were collected using the
BME688 (Bosch Sensortec) [3]. It is a metal oxide-based sen-
sor that detects gases by adsorption and subsequent oxidation
or reduction on its sensitive layer. It is capable of measuring
volatile organic compounds (VOCs) in the surrounding air.
The metal oxide layer of the gas sensor at different tempera-
tures allows measurements with different sensitivities, thereby
creating unique fingerprints for different gas compositions. In
other words, the sensor acts as an electronic nose that can
distinguish different gas compositions by their unique digital
fingerprints. However, it needs to first learn about the different
gases. A trained classification model can then be deployed on a
microcontroller that will take the readings from the BME688,
which in our case is the Adafruit HUZZAH32 - ESP32 Feather
board [1].

Given the measurement set X = {(xj , yj)}Nj=1, where the
total number of samples N can be broken down according to
the class labels,

N = N0 +N1, N0 >> N1, (1)

and the subscripts 0 and 1 indicate fresh and spoiled, re-
spectively, we would like to report the performance metrics
with the proposed oversampling method on the Out-of-Bag
Bootstrap (or Out-of-Bootstrap, OOB) test set [5], [14] as well
as on measurements resulting from another sensor.

Next, Section II elaborates the proposed oversampling al-
gorithm, a dummy example to illustrate it, and its application
on the case study. Section III includes the qualitative results
and finally Section IV concludes the paper and discusses the
future direction.979-8-3503-3959-8/23/$31.00 ©2023 IEEE



II. METHODOLOGY

Suppose the feature space can be divided into K disjoint
grids. We propose using the heterogeneity measure

H (C, k) = −
C∑

c=1

ack
N

log

(
ac,k∑C
c=1 ac,k

)
, k = 1, . . . ,K,

(2)
where ack is the number of sample points that belong to
class c in grid k such that the grids with no sample points
or with homogeneous sample points will have H (C, k) = 0.
This was inspired by the homogeneity score in clustering [16]
and here we treat each grid as one cluster. The resampling
probability distribution is then modified such that the homoge-
nous area becomes less likely to be selected and the samples
in the heterogeneous area are more favored. Contrary to the
other oversampling methods previously discussed, where the
treatments are focused on the minority class, this method also
affects the majority class.

Algorithm 1 summarises the proposed method applied for
oversampling. A simple example with two classes (Class ∗ and
Class ◦) with 6 and 8 instances is illustrated in Table I. The
two-dimensional feature space is divided into K = 18 grids.
Originally, the stratified resampling probability distribution is
uniform with p∗ (k) = 1/6 and p◦ (k) = 1/8, k = 1, . . . ,K
(Ia). The heterogeneity measure is calculated (Ib) and as we
can see the probabilities for both classes in the more hetero-
geneous area increased while those in the more homogenous
area are reduced (Ic).

Algorithm 1 Oversampling with Heterogeneity-Stratified
Bootstrap (HSBoot)

Step 1 Divide the sample domain into K grids.
Step 2 For each grid k, k = 1, . . . ,K, calculate the

heterogeneity measure H (C, k) (Eq. 2)
Step 3 Modify the resampling probability distribution

pc (k) for each class c, c = 1, . . . , C, in cluster k,

p′c (k) =
1
Nc

+ γH (C, k)

1 + γ
∑

k ackH (C, k)
, (3)

where γ is a hyperparameter constant that determines
the influence of the heterogeneity, ack is the number
of samples in grid k that belongs to class c, and the
denominator is to make sure that the sum equals 1.

Step 4 HSBoot resampling and oversampling: Sample N0

instances with replacement from Class 0 (non-target)
and likewise N0 instances from Class 1 (target) with
the updated distribution p′c. Let this sample set with
2N0 instances be Xtrain.

Step 5 Out-of-Bootstrap (OOB) test set: take the observa-
tions from X that do not make it to Xtrain to be the
bootstrap test set, Xtest.

The problem with using the OOB test set is that the re-
maining minority instances that did not make it to the training
will be even smaller in proportion to the majority instances.

TABLE I: Dummy example of C = 2 classes with respectively
6 and 8 sample points, and K = 18 grids.

∗

◦
∗

◦
∗ ∗
◦ ◦

∗
◦ ◦ ◦ ◦

∗

(a) Random resampling probability distribution pc (k)

.167

.125

.167

.125

.167 .167

.125 .125

.167

.125 .125 .125 .125

.167

(b) Heterogeneity measure H (C, k)

0 0 0 0 0 0

0 .099 .198 .099 0 0

0 0 0 0 0 0

(c) Updated resampling probability distribution p′c (k)

.105

.078

.167

.140

.229 .229

.202 .202

.167

.140 .078 .078 .078

.105

Therefore, we also took measurements from a different sensor
that was measuring the same specimens at around the same
time, as an additional test set.

The gas compositions of the following specimens were
measured:

1) Fresh Chicken: a piece of fresh, raw chicken
2) Yoghurt: fresh yoghurt
3) Beef: a piece of fresh raw beef
4) Coffee: a handful of coffee beans
5) Mix (target): a piece of spoiled raw chicken, mixed with

some fresh vegetables
6) Rotten Chicken (target): a piece of spoiled raw chicken

Each specimen was placed in a plastic container together
with the board that was suspended a few centimeters above
the base of the container (see Fig. 1). The containers were
not completely sealed off, hence the sensor still has a slight
exposure to the atmosphere in the well-ventilated room where
the experiments took place.

For the purpose of this paper, we took only 500 measure-
ments for each of the specimens mentioned. We used two
predictive features, the temperature and gas resistance. The
original data were in degree Celcius and Ohms, respectively,
then normalised such that they have 0 to 1 range.

Fig. 2 shows the gas measurements of the 6 specimens. The



(a) (b)

Fig. 1: Training the electronic nose with different specimens.

first 4 specimens are non-target (fresh) and the last 2 are the
target (spoiled) classes. Fig. 3 shows the gas measurements
from a different sensor. The new test set is left as is (i.e. not
resampled, hence unbalanced).
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Normalized Temperature vs. Normalized Resistance of 6 Food Specimens

Fresh Chicken

Yoghurt

Beef

Coffee

Mix

Rotten Chicken

Fig. 2: The measurements for the training set
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The Test Set: Measurements From a Different Sensor
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Fig. 3: The measurements as the additional test set

The random resampling probability for Class 0 is 1/(4×500)

and for Class 1 (target) is 1/(2×500). After taking the hetero-
geneity into account, the probability distribution was updated,
as illustrated in Fig. 4.

(a)

(b)

Fig. 4: Illustration of the updated resampling PMFs

In the experiment, we tried different λ: λ = 0.1, λ = 1,
and λ = 5, and compared the performance of our method
with the random oversampling. In the next section we report
the performance of the trained models based on different
algorithms: naive Bayes classifier [8, Chapter 4], decision trees
[10], quadratic discriminant analysis [7], and neural network
[2]. For each of the algorithm, the hyperparameters were
optimised with leave-out 0.3 cross validation.

III. RESULTS AND DISCUSSION

We list in Table II the following classification metrics, where
TP is the true positives, TN the true negatives, FP the false
positive, and FN the false negatives [17]:

1) Sensitivity (SN) or true positive rate (TPR) or recall
(REC) = TP / (TP + FN)

2) Specificity (SP) or true negative rate (TNR) = TN / (TN
+ FP)

3) Accuracy (ACC) = (TP + TN) / (TP + TN + FN + FP)
4) Error rate (ERR) = (FP + FN) / (TP + TN + FN + FP)
5) Precision (PREC) = TP / (TP + FP)
6) F1 score (F1) = 2 * PREC * REC / (PREC + REC)

We observe that the proposed resampling method might
slightly reduce the sensitivity and increase the error rate, but
the specificity, accuracy, precision, and F1 score are constantly
better, which is favorable in an unbalanced data set. We also
observe that higher λ seems to improve the metrics up to
certain point, then there is a diminishing return.



TABLE II: Average out of 500 trials for SN (sensitivity, or true positive rate or recall), SP (specificity, or true negative rate),
ACC (accuracy), ERR (error rate), PREC (precision), F1 (F1 score, harmonic mean of precision and recall)

(a) Naive Bayes

Random oversampling, Proposed HS-Bootstrap, Random oversampling, Proposed HS-Bootstrap,
on OOB on OOB test set on another sensor on another sensor test set
test set λ = 0.1 λ = 1 λ = 5 test set λ = 0.1 λ = 1 λ = 5

SN .9945 .9917 .9917 0.9905 .9842 .9850 .9797 .9701
SP .9990 .9991 .9994 .9995 .9944 .9945 .9960 .9961

ACC .9983 .9966 .9968 .9965 .9910 .9914 .9906 .9874
ERR .0017 .0034 .0032 .0035 .0090 .0086 .0094 .0126

PREC .9944 .9982 .9988 .9990 .9888 .9890 .9920 .9921
F1 .9944 .9949 .9952 .9947 .9863 .9868 .9855 .9806

(b) Decision Tree

Random oversampling, Proposed HS-Bootstrap, Random oversampling, Proposed HS-Bootstrap,
on OOB on OOB test set on another sensor on another sensor test set
test set λ = 0.1 λ = 1 λ = 5 test set λ = 0.1 λ = 1 λ = 5

SN .9989 .9978 .9982 .9990 .9991 .9982 .9980 .9983
SP .9980 .9984 .9987 .9987 .9932 .9933 .9950 .9957

ACC .9981 .9982 .9985 .9988 .9952 .9952 .9960 .9965
ERR .0019 .0018 .0015 .0012 .0048 .0048 .0040 .0035

PREC .9893 .9967 .9973 .9974 .9867 .9869 .9901 .9914
F1 .9940 .9972 .9977 .9982 .9928 .9929 .9940 .9948

(c) Quadratic Discriminant

Random oversampling, Proposed HS-Bootstrap, Random oversampling, Proposed HS-Bootstrap,
on OOB on OOB test set on another sensor on another sensor test set
test set λ = 0.1 λ = 1 λ = 5 test set λ = 0.1 λ = 1 λ = 5

SN .9960 .9914 .9957 .9976 .9978 .9930 .9956 .9951
SP .9967 .9975 .9979 .9978 .9909 .9937 .9932 .9921

ACC .9966 .9955 .9971 .9977 .9932 .9934 .9940 .9931
ERR .0034 .0045 .0029 .0023 .0068 .0066 .0060 .0069

PREC .9826 .9951 .9958 .9957 .9822 .9821 .9868 .9846
F1 .9891 .9942 .9957 .9966 .9899 .9900 .9911 .9897

(d) Neural Network with 2 hidden layers, with 8 and 4 fully connected outputs for each hidden layer, respectively.

Random oversampling, Proposed HS-Bootstrap, Random oversampling, Proposed HS-Bootstrap,
on OOB on OOB test set on another sensor on another sensor test set
test set λ = 0.1 λ = 1 λ = 5 test set λ = 0.1 λ = 1 λ = 5

SN .9803 .9433 .9440 .9086 .9761 .9642 .9364 .9021
SP .9723 .9985 .9989 .9990 .9449 .9540 .9698 .9717

ACC .9735 .9801 .9806 .9688 .9553 .9574 .9587 .9485
ERR .0265 .0199 .0194 .0312 .0447 .0426 .0413 .0515

PREC .9663 .9969 .9977 .9978 .9338 .9377 .9504 .9518
F1 .9751 .9970 .9978 .9982 .9576 .9614 .9666 .9683

IV. CONCLUSION AND FUTURE WORK

We proposed a novel stratified bootstrap method based on
the heterogeneity of instances in certain regions of the feature
space. This was then applied for oversampling a minority class
in an unbalanced dataset when training a spoiled food detector.
The proposed method constantly improved the specificity,
accuracy, precision, and F1 score of the detector as compared
to those by using random oversampling.

In the future, it would be interesting to replace the grids k
with adaptive region of interests as far as the heterogeneity
is concerned, as well as to develop a method to optimise the
value of λ.
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