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Abstract—Mobile Edge Caching (MEC) technology aims to
provide high-quality multimedia content to mobile users by
bringing storage and computation resources closer to the edge
of the network. MEC networks, however, face several challenges
such as limited storage capacity, dynamic network conditions, and
the need for low-latency content delivery. To address these chal-
lenges, recent research has focused on integrating MEC networks
with Deep Neural Networks (DNNs), in particular, supervised
learning models. One significant limitation of supervised popu-
larity prediction models is the requirement for manual labeling
of contents as popular or unpopular by investigating users’
past behavior, which can be a time-intensive task. This paper
proposes a self-supervised learning algorithm called Contrastive
learning Popularity (CoPo) prediction framework to predict the
dynamic content popularity in a MEC network. The framework
utilizes the distinguishing aspect of the Contrastive Learning
(CL) paradigm to recognize differences among input samples,
including users’ contextual information and is based on the
Long Short Term Memory (LSTM) model to capture temporal
information. Simulation results illustrate that the proposed CoPo
framework outperforms the self-supervised/unsupervised state-
of-the-art methods.

Index Terms—Mobile Edge Caching, Popularity Prediction,
Self-supervised Learning, Contrastive Learning

I. INTRODUCTION

Mobile Edge Caching (MEC) is a new paradigm in mobile
networks that aims to address the growing demand for high-
quality multimedia content by bringing storage closer to
mobile users [1], [2]. MEC technology has the potential to
revolutionize the way we consume data on mobile devices by
reducing latency and improving the overall user experience.
MEC networks, however, face several challenges, such as
limited storage capacity, dynamic network conditions, and
the need to provide low-latency content delivery to users.
These challenges can make it difficult to optimize caching
decisions and ensure that users receive the content they need
in a timely and efficient manner. To address these challenges,
the focus of recent researchers has shifted to integrating MEC
networks with Deep Neural Networks (DNNs) [3]–[15]. More
precisely, DNNs can optimize caching decisions in MEC
networks by processing large amounts of data, adapting to
changing network conditions in real time, and personalizing
content delivery based on user preferences.
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A large variety of DNN models [3]–[15] has been recently
developed for popularity prediction in MEC networks, includ-
ing but not limited to Vision Transformers (ViT) [8], [9], Long
Short Term Memory (LSTM) [10], [11], and Convolutional
Neural Network (CNN) [15]. Despite the various advantages
of existing DNN techniques, a significant limitation of most
of these models is their reliance on supervised learning. This
means that these models require labeled samples to train,
making it difficult to apply them to real-world problems where
large amounts of labeled data may not be readily available. In
cases where the dataset used for a study is unlabeled, manual
labeling becomes necessary, which can be time-consuming and
expensive. This need for manual labeling highlights one of
the significant challenges of existing DNN-based popularity
prediction frameworks, emphasizing the importance of devel-
oping highly accurate unsupervised/self-supervised learning
models that can learn from unlabeled data, making them more
adaptable to real-world situations. The paper aims to further
advance this emerging field.
Literature Review: Recently, supervised learning models
have been widely used to predict the popularity of contents
in MEC networks. For instance, Doan et al. [16] introduced
a CNN-based content-aware popularity prediction framework.
Ndikumana et al. [17] employed CNN and Multi-Layer Per-
ceptron (MLP) in their study to make predictions about both
the characteristics of users and the likelihood of content
requests. Additionally, Reinforcement Learning (RL) has been
used to model real-time interactions between users and edge
devices. For instance, Tang et al. [18] utilized a framework
based on Deep Reinforcement Learning (DRL) to simulate
and predict the requesting behaviors of users. Sadeghi et
al. [19] proposed an adaptive caching framework for hierar-
chical networks that utilized a DRL model to represent the
interactive influence between cloud and edge devices. These
models, however, are not suitable for highly dynamic practical
networks, as they assume that the popularity of content will
remain constant over time.

Recent studies have shifted their focus towards develop-
ing supervised prediction models that can process sequential
and time-variant historical request patterns. For instance, the
LSTM model has been used in various studies, including
those by [10], [11], [20], to predict the number of requests
of contents in the future. While LSTM is effective at learning



long-term dependencies, it is not able to account for the
spatial correlation between multiple contents. Transformer
architecture [21], [22] is another type of time-series learning
model that does not require sequential data to be analyzed in
the same order. In our previous work [12], we utilized a multi-
channel Transformer architecture that assigns each channel to
the historical request pattern of specific content to capture the
spatial correlation of contents. In our other works [8], [9], we
employed the ViT architecture to simultaneously predict mul-
tiple contents popularities by creating 2D images as the input
samples, where each column of the 2D image was linked to the
request pattern of one specific content. While the supervised
learning models proposed in the aforementioned works [8],
[9], [12] provide high accuracy for classifying contents as
popular/unpopular, their complexity increases exponentially
with an increase in the number of contents. Furthermore, the
absence of contextual information regarding users, such as
age and gender, makes it challenging to effectively capture
the unique interests of individual users. Finally, a significant
limitation of these models is the requirement for manual
labeling of contents by investigating users’ past behavior,
which can be a time-intensive task. This paper aims to tackle
these issues.
Contributions: In light of the above discussion, the objective
of this study is to design a self-supervised learning algorithm
to predict the dynamic content popularity in a MEC network.
Referred to as the Contrastive learning Popularity (CoPo)
prediction framework, it utilizes the distinguishing aspect
of the CL paradigm, which involves recognizing differences
among input samples, thereby eliminating the need for simulta-
neously input request patterns of all contents to capture spatial
correlations. More precisely, the historical requests of each
content are considered as the input sample, including users’
contextual information, and are fed into a shared encoder
which is based on the LSTM model to capture the temporal
information. The simulation results demonstrate that, while
the CoPo framework’s classification accuracy is slightly lower
than that of supervised learning popularity prediction models,
the CoPo framework does not need manual labeling of content
in a supervised manner. Furthermore, the CoPo framework
outperforms the unsupervised state-of-the-art methods.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We study an MEC network that is supported by Unmanned
Aerial Vehicles (UAVs) acting as aerial caching nodes and
Femto Access Points (FAPs) as terrestrial infrastructure, and
both have a limited storage capacity, denoted by K. The
network consists of two sets: the set of UAVs, denoted by us,
where s ranges from 1 to Nu; and the set of FAPs, denoted
by fi, with i ranging from 1 to Nf . The users in the network
are denoted by ul, where l varies from 1 to U , and they
request different multimedia contents, identified by cm, where
m ranges from 1 to M . This completes the presentation of the
system model. Next, we present the dataset used in this study.
Dataset: In this study, the proposed CoPo framework is
evaluated using the MovieLens dataset [23], which is a pop-

Fig. 1. (a) A typical sample of the Movielens dataset, and (b) the adopted
version of the Movielens dataset used for the CoPo framework.

ular movie recommendation service. The MovieLens dataset
includes a document named u.user, which presents users’ con-
textual information such as gender, age, occupation, and ZIP
code, as depicted in Fig. 1(a). The ZIP codes are transformed
into latitude and longitude coordinates to retrieve the locations
of the users during their requests. Additionally, the dataset
provides another document named u.data, comprising the user
ID, item ID, the corresponding rating given by the user, and
the timestamp when the user watched and rated the content.

To prepare the Movielens dataset for use with the CoPo
framework, several steps are taken. First, the u.data and u.user
documents are combined based on the shared column “user
ID”, as depicted in Fig. 1(b), and the ZIP code information
is discarded. Next, the combined dataset is sorted by “item
ID” and “timestamp”. The “user ID” and “item ID” columns
are then removed as they do not provide relevant information.
Categorical features such as gender, age, and occupation are
encoded using a one-hot encoder. The timestamp column is
discretized with a resolution of one day to ensure edge device
storage is updated during off-peak times, and the new column
is called “day”. Finally, a new column called “label” is added
to the dataset to indicate the content’s popularity as either
popular or unpopular, which is used in the fine-tuning phase
to evaluate the performance of the proposed CoPo framework.

To predict the popularity of multimedia content in the future,
we define an observational window for each content cm with
a length of Tm

τ at time τ . This window allows us to study
the request pattern of contents within this range and predict
their popularity within the time window [τ, τ + Ts], where Ts

represents the study window. We follow the approach in Refer-
ence [24] by considering the same number of requests, No, in
the observational window for all contents, with zero padding
for those with fewer requests. We assume that the study win-
dow has a length of Ts = 1 since the storage capacity of edge
devices is updated daily. We create a dataset, D = {dmτ }Mm=1,
comprising time-series observational data for M multimedia
contents and U users, where dmτ = {(xm

k , tmk , ymk )}No

k=1. The



Fig. 2. The overall perspective of the CoPo architecture.

contextual information of users requesting content cm and the
rating they gave to content cm are included in {xm

k }No

k=1 (see
Fig. 1(b)). The rating time is represented by {tmk }No

k=1, and
ymk ∈ {0, 1} indicates content popularity. Specifically, ymk
is set to 1 if content cm becomes popular during the study
window Ts; otherwise, ymk = 0.

III. PROPOSED COPO FRAMEWORK

This section outlines the constituent parts of the CoPo
framework. The CoPo architecture, depicted in Fig.2(a), is
built upon the CL network, which is used to learn the latent
representation in which similar samples are positioned close
together, while dissimilar samples are positioned far apart.
In each batch, one input sample is selected as the anchor
sample, and data augmentation is used to create a positive pair
with the anchor sample, while the other samples in the batch
are considered negative samples. In this study, we employ
two data augmentation methods to produce positive samples
(wherever possible, we remove the subscript τ to simplify
the notation): (i) Masking: To create a positive sample for
content cm, which is represented by the longitudinal data dm,
several users’ information {xm

k }No

k=1 is randomly masked. This
results in a new positive sample, denoted by d

(MA)
m , and (ii)

Shuffling: This data augmentation method involves generating
a positive sample for content cm by randomly rearranging
the time order of the users’ information that requested the
content. The resulting shuffled sample is denoted by d

(SH)
m .

Then, the augmented and anchor samples are processed by a
shared encoder. To preserve the temporal correlation of request
patterns, the encoder is built upon the LSTM architecture,
where the latent representation of xm

k at time tmk , denoted
by hm

k = LSTM(xm
k , hm

k−1) where k = {1, . . . , No}.

Similarly, the encoded shuffled and masked samples are de-
noted as h

m,(SH)
k and h

m,(MA)
k , respectively. To complete the

process, we apply the masked and shuffled CL loss functions,
which are denoted as L(MA)

cl and L
(SH)
cl , respectively. In these

loss functions, the shuffled/masked learned representation is
considered the positive sample, while the other representations
in the batch are regarded as negative samples. The loss
functions are expressed as follows

L
(MA)
cl = −

M∑
m=1

log
exp

(
hm
No

(h
m,(MA)
No

)T
)

M∑
j=1,j ̸=m

exp
(
hm
No

(h
j,(MA)
No

)T
) , (1)

L
(SH)
cl = −

M∑
m=1

log
exp

(
hm
No

(h
m,(SH)
No

)T
)

M∑
j=1,j ̸=m

exp
(
hm
No

(h
j,(SH)
No

)T
) , (2)

where (.)T is the transpose function, and the total CL loss is
Lcl = L

(MA)
cl + L

(SH)
cl . Furthermore, the Time-LSTM2 [25]

is used as the decoder to recreate the masked version of
xm
k , where the output, denoted by xkm, is given by xm

k =

Time − LSTM2(Hm
k ), where Hm

k = [(h
m,(MA)
1 , tm2 −

tm1 ), (h
m,(MA)
2 , tm3 −tm2 ), . . . , (h

m,(MA)
k , tmk+1−tmk )] with k ∈

{1, . . . , No}, where each pair consists of a masked encoded
sample h

m,(MA)
k at time tmk and the time difference between

two consecutive requests of content m, which is tmk − tmk−1.
The regenerating loss, denoted by Lre, is given by

Lre =

No∑
k=1

||xm
k − xm

k ||2, (3)

where the goal is to minimize Lre. Note that the self-
supervised CoPo framework is used for pre-training, where
the shared encoder is taught to map input samples into
meaningful latent representations. Following the training of
the CL model, a supervised classifier is implemented for fine-
tuning. In Fig. 2(b), the encoder that has been trained during
the pre-training phase is employed to transform input samples
into latent representation. To demonstrate the efficiency of
the proposed CoPo framework, a logistic regression model
is utilized during the fine-tuning process, where the labels
{ymk }Mm=1 are used as the true values.

IV. SIMULATION RESULTS
A UAV-aided MEC network was studied, comprising four

ground-based caching nodes and two aerial ones, and has a
total of 943 users and 1682 multimedia items. Based on the
typical assumption, the storage capacity of each caching node
is 10% of the entire multimedia collection, with all items
having identical sizes. The model was trained using a five-fold
cross-validation approach, with 80% of the samples being used
for training and 20% for testing. The Adam optimizer was
employed during training, with betas set at (0.9, 0.999) and
weight decay at 1e− 7. To avoid overfitting, l2 regularization
was set at 1e − 6. The encoder in this case is implemented
using an LSTM network, which utilizes a Rectified Linear
Unit (ReLU) and sigmoid activation functions. The output



TABLE I
ACCURACY, PRECISION, RECALL, AND F1-SCORE FOR TWO CLASSES (I.E., POPULAR (CLASS 1) AND UNPOPULAR (CLASS 0)) USING 5

FOLD CROSS-VALIDATION.

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy - 95.19± 1.05 92.17± 0.71 91.62± 0.23 93.54± 0.45 92.44± 0.23 92.99± 1.44

Precision
0 97.96± 1.10 94.76± 1.41 92.68± 0.58 92.72± 0.95 98.43± 0.60 95.31± 2.68

1 92.74± 1.76 89.87± 0.88 90.61± 0.45 94.39± 0.06 87.77± 0.46 91.08± 2.49

Recall
0 92.30± 2.00 89.28± 1.05 90.38± 0.54 94.50± 0.01 86.26± 0.63 90.54± 3.01

1 98.07± 1.05 95.05± 1.41 92.85± 0.63 92.58± 1.05 98.62± 0.54 95.43± 2.74

F1-score
0 95.04± 1.28 91.93± 0.83 91.51± 0.27 93.60± 0.48 91.94± 0.30 92.81± 1.51

1 95.33± 1.16 92.38± 0.82 91.72± 0.28 93.47± 0.56 92.88± 0.25 93.16± 1.40

TABLE II
COMPARISON WITH STATE-OF-THE-ART BASED ON THE CLASSIFICATION ACCURACY.

Model Self-Supervised/Unsupervised Learning Supervised Learning

CoPo AGNN [27] ANN + Modified K-Means [27] SCARF [28] ViT [8] MTEC [12] ViT-CAT [9] DLCC [29]

Accuracy 92.99% 81% 74% 87.17% 93.72% 94.13% 94.84% 92.81%

Fig. 3. A typical embedded space for the latent representation of popular and
unpopular content, using The TSNE method.

size of this block is indicated by DE. Finally, the decoder
performs based on the Time-LSTM2, with an output size of
DD, where the activation functions are sigmoid and Tanh. By
using a process of trial and error, the best version of the CoPo
framework was determined to have the following features: DE
and DD were both set to 512, the batch size, the learning rate,
and No were established at 1e− 3, 128, and 20, respectively.
Table I illustrates the accuracy, precision, recall, and f1-score
for different 5 folds.

Furthermore, we leverage the T-distributed Stochastic
Neighbor Embedding (TSNE) technique [26] to assess the ef-
fectiveness of the CL block in producing latent representations
that can discriminate between popular and unpopular content.

To demonstrate this, we present Fig. 3, which illustrates the
embedded space of a test set obtained from one of the five-fold
cross-validation experiments, which is clearly separable for
popular and unpopular contents. Finally, we compare the pro-
posed CoPo framework in terms of classification accuracy with
several self-supervised, unsupervised, and supervised learning
models. As shown in Table II, the proposed CoPo architec-
ture outperforms other unsupervised baselines, i.e., Adaptive
Genetic Neural Network (AGNN) [27] and Artificial Neu-
ral Network (ANN) with modified K-Means [27], and Self-
Supervised Contrastive Learning using Random Feature Cor-
ruption (SCARF) [28]. Moreover, we compare the proposed
CoPo framework with several supervised learning models,
such as Vision Transformer [8], Multiple-model Transformer-
based Edge Caching (MTEC) [12], Vision Transformers with
Cross Attention (ViT-CAT) [9], and Deep Learning-based
Content Caching (DLCC) [29] frameworks. Table II demon-
strates that the classification accuracy is comparable to that
of supervised learning models while eliminating the need for
manual labeling of datasets, which saves time.

V. CONCLUSION

In this paper, we presented the Contrastive learning Popu-
larity (CoPo) prediction framework, a self-supervised learning
algorithm for predicting content popularity in Mobile Edge
Caching (MEC) networks. By leveraging the CL paradigm
and utilizing the LSTM model, the CoPo framework captured
temporal and spatial information of historical requests of
contents without the need for manual labeling. Our simulation
results demonstrate that the proposed CoPo framework outper-
forms unsupervised state-of-the-art methods while maintaining
comparable classification accuracy to supervised learning pop-
ularity prediction models.
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