
Speaker Adapted Codebooks for Speech
Enhancement

Chidambar B
Department of Mathematical and Computational Sciences

Sri Sathya Sai University for Human Excellence
Karnataka, India

chidambar.b@sssuhe.ac.in

D Hanumanth Rao Naidu
Department of Mathematical and Computational Sciences

Sri Sathya Sai University for Human Excellence
Karnataka, India

hanumanth@sssuhe.ac.in

Abstract—Speech enhancement methods employing a priori
information of speech and noise as trained codebooks of speech
and noise spectral shapes parametrized by, e.g., linear predictive
(LP) coefficients have shown to perform well in non-stationary
noise conditions even in single channel mode. Generally, speaker
independent (SI) codebooks are employed but for applications
such as mobile communication, speaker dependent (SD) code-
books are more effective. However, large amount of training
data required for generating such SD models is not available in
practical application. One way to overcome this limitation is to
adapt available SI model to a specific speaker data using smaller
amounts of training data incrementally as and when available. In
this paper, we investigate the adaption of SI codebook of spectral
representation of speech data to a specific target speaker using
Vector Quantization Maximum a posteriori (VQ-MAP) algorithm
and study its effect on speech enhancement performance. The
experimental results indicate that VQ-MAP leads to adapted
codebooks which are closer representation of a speaker than SI
codebooks and enable better speech enhancement compared to
SI models in codebook-based speech enhancement technique.

I. INTRODUCTION

Speech enhancement, or noise reduction, refers to removal
of noise from noisy speech. This has application in several
areas such as mobile communication, hearing aids and speech
recognition. Several speech enhancement techniques have been
developed in the last few decades [1, 2]. Among the data
driven based approaches, codebook-based speech enhancement
(CBSE) techniques [3] which use prior knowledge about
speech and noise power spectral densities in the form of linear
predictive coefficients (LPC) have shown to provide satisfac-
tory speech enhancement even in non-stationary noise con-
ditions. Codebook-based approaches for speech enhancement
are particularly relevant in the field of mobile communication
where codebooks continue to play significant role [4]. While
[3] used speaker independent (SI) codebooks, [5] introduced
usage of speaker dependent (SD) models in the CBSE frame-
work which led to better speech enhancement compared to SI
models. Again, such an approach is appealing in applications
like mobile communication where mostly a single speaker is
involved with the device. However, generating SD codebooks
requires large amount of target speaker data which is not
always available in a practical scenario. This limitation can
be mitigated by adapting SI models using smaller amounts of
target speaker data to generate speaker adapted (SA) models.

Speaker adaptation of speech data models has been a
topic of research for several decades with mainly speaker
verification, speech and speaker recognition as the fields of
application. The initial methods of speaker adaption dealt
with Vector Quantization (VQ) models [6], however, later the
focus shifted to GMM-MAP techniques [7]. Recently, Deep
Neural Networks (DNN) based accoustic models have gained
significance for speaker adaptation [8, 9]. In this work, we
utilize codebooks, which have not been explored in the field of
speaker adaptation, and apply Vector Quantization Maximum a
posteriori (VQ-MAP) algorithm of [10] to adapt SI codebooks
of LP coefficients of speech data using small amounts of
speaker data. Considering that SI is trained using large amount
of speaker data it is expected that the adaption will benefit
from the robust structure of SI codebooks and require only
small amount of speaker specific data for achieving effective
adaption. In situations where the observed and modeled speak-
ers mismatch, the framework of the CBSE [11] ensures the
minimum performance upto the level of SI codebook.

VQ-MAP method uses maximum a posteriori approach to
adapt centroids of spectral representation vectors of speaker
data. It is a special case of GMM-MAP approach involving
construction of a Universal Background Model (UBM) [7].
UBM represents collective spectral space of all speakers and
in the case of CBSE framework relates to SI model. [10] uses
Mel Frequency Cepstral Coefficients (MFCC) and applies the
VQ-MAP for speaker verification. In this work, we employ
VQ-MAP approach for adaptation of LPC vector centroids of
speaker data and use the adapted codebooks for single channel
speech enhancement. As far as we know, the speaker adapted
models have not been used so far in the speech enhancement
applications. The experimental results show that VQ-MAP is
effective in generating speaker adapted codebooks which are
better representation of a speaker’s speech data compared to
SI models and result in improvement of speech enhancement
under the CBSE framework.

The remainder of the paper is organized as follows. The
related background work is described in Section II. A brief
outline of the CBSE framework and VQ-MAP algorithm is
provided in Section II-A and Section II-B, respectively. In
Section III, the details and results of the experiments performed
for generating SA codebooks using VQ-MAP algorithm and
their performance in speech enhancement are presented. Fi-
nally, Section IV provides the conclusions.979-8-3503-3959-8/23/$31.00 ©2023 IEEE



II. RELATED BACKGROUND WORK

A. Codebook-Based Speech Enhancement

Consider an additive noise model, where the noisy signal
y(n) can be written as

y(n) = x(n) + w(n) (1)

where y(n), x(n) and w(n) represent the noisy speech, clean
speech and noise signal, respectively, and n is the time index.

In terms of power spectral density (PSD) in the frequency
(ω) domain, the above can be expressed as,

Py(ω) = Px(ω) + Pw(ω) (2)

In the CBSE method [3], the speech and noise PSDs are
parametrized as LPC and stored as trained codebooks. The
relation between LPC vector θx = (ax0

, . . . , axp
), where

ax0
= 1 and p is the speech LPC model order, and the PSD of

the underlying speech segment is given as P̄x(ω) =
1

|Ax(ω)|2

where Ax(ω) =
∑p

k=0 axk
e−jωk, and overbar in the notation

P̄x(ω) is to denote the gain normalised PSD. Similar expres-
sion can be written for noise PSD P̄w(ω). Considering a pair
of speech and noise PSDs given by ith vector from the speech
codebook and jth vector from the noise codebook, the noisy
PSD corresponding to the pair can be estimated as:

P̂ ij
y (ω) = gijx P̄x(ω) + gijw P̄w(ω) (3)

where only the frequency independent level terms gijx and gijw
corresponding to the speech and noise PSDs, respectively, are
unknown. The goal of the CBSE algorithm is to estimate noisy
PSD either by determining a single pair of codebook vectors
from speech and noise codebook or a weighted sum of code-
book spectra under a Bayesian framework, which minimizes
the distortion between the observed noisy PSD Py(ω) and the
modelled PSD P̂y(ω). The corresponding speech and noise
PSD estimates, P̂x(ω) = gxP̄x(ω) and P̂w(ω) = gwP̄w(ω)
can then be used to construct a Wiener filter for enhancing
noisy speech signal in the frequency domain:

H(ω) =
P̂x(ω)

P̂x(ω) + P̂w(ω)
. (4)

A Bayesian framework was proposed in [11] wherein the
speaker mismatch cases can be handled in a robust way
employing both the SI and SD codebooks under the CBSE
method for speech enhancement.

B. VQ-MAP

VQ-MAP is derived from GMM-MAP algorithm of [10].
For applying MAP procedure to VQ setup, a probabilistic
model is constructed for the VQ model by specifying a
Gaussian mixture likelihood that corresponds to the distortion
criterion used in VQ model construction. The prior parameters
of the Gaussian mixture as required for GMM-MAP are
selected from a Universal Background Model (UBM) trained
by applying a clustering algorithm such as k-means on a large
number of training utterances from a number of speakers. A
new speaker model is derived by adapting the well-trained
UBM with that of speaker’s training utterances using MAP
procedure as described below.

Let UBM be represented by a set of K centroids as U =
{u1, u2, . . . , uK}. Given the training data for a new speaker,
X = {x1, x2, ..., xN}, the adaptation is performed using the
following equations in an iterative fashion,

qn = arg min
1≤k≤K

||xn − uk||2 1 ≤ n ≤ N (5)

x̄k =
1

|Sk|
∑

xn∈Sk

xn (6)

ck = wkx̄k + (1− wk)uk (7)

wk =
|Sk|

|Sk|+ r
(8)

where,

xn is the nth vector in X ,

qn is the cluster to which xn belongs to,

Sk is the set of vectors in the kth cluster,

|Sk| is the number of vectors in the Sk cluster,

x̄k is the centroid of Sk,

ck is the adapted vector corresponding to kth cluster,

wk is the weight assigned to xk

r is a fixed constant factor called relevance factor.

The relevance factor represents the number of training
vectors that need to fall in a cluster in order to provide
the computed centroid of that cluster same weight as the
corresponding UBM centroid for adaptation.

III. EXPERIMENTAL RESULTS

In this section, we present the details & results of the
experiments performed using different codebooks - SI, SD &
SA, and analyse them. We investigate whether the adapted
codebooks generated by applying VQ-MAP algorithm to the SI
codebook provide better representation of the speaker than SI
models and whether this translates into improvement in speech
enhancement in the CBSE framework.

A. Codebook training

SI & SD codebooks of speech LPC vectors were trained
using speech data from the Wall Street Journal (WSJ) speech
database [12]. For training the speech codebook around 180
distinct utterances of duration around 3 to 5 seconds each
from a total of 50 speakers, 25 male and 25 female, were
used. The SD codebook was trained using utterances from a
single male speaker. The speech content used in the training
of both the SI and SD codebooks was identical, and deferred
only in the number of people uttering the sentences. The LP
coefficients were extracted from Hann windowed segments of
length 256 samples, with 50% overlap at a sampling frequency
of 8 KHz. The SI and SD codebooks were trained using the
Linde-Buzo-Gray (LBG) algorithm [13] with the root mean



TABLE I: Average log-spectral distortion (dB) quantization for
SA codebooks trained using different relevance factors

Relevance factor SI SA-5-1 SA-5-2 SA-10-1 SA-10-2 SD

r=16 2.53 2.23 2.22 2.22 2.21 1.95

r=64 2.53 2.24 2.21 2.21 2.19 1.95

squared log-spectral distortion (LSD) measure as the error
criterion. Speaker adapted codebooks were trained using VQ-
MAP algorithm specified in Section II-B.

The adaption of SI to SA codebook was done incrementally
with 5 training utterances of around 3 to 5 seconds each at a
time, which adds up to around 20 seconds of adaptation data
from the selected male speaker. As previously mentioned, rele-
vance factor determines the weight assigned to adaptation data
centroid as against SI centroids. A lower value of relevance
factor would result in higher weightage to adaptation data
which may result in over distortion of the spectral distribution
of SI spectral space. Similarly, a higher relevance factor may
give lesser than required weightage to the adaptation data
which can slow down the adaptation. In [10], the relevance
factor was fixed to 16 empirically. In our experiments, it was
observed that for the amount of adaptation data used, on an
average around 50 to 60 LPC vectors would fall into 256
clusters of SI codebook. Thus, using r=16 can cause over
adaptation. Accordingly, relevance factor was fixed to 64. That
this value doesn’t slow down the adaptation was tested by
comparing the LSD quantization results for 10 test utterances
from the same speaker with SA trained using relevance factor
values of 16 and 64. As shown in Table I, r=64 doesn’t
slow down the adaptation rate significantly in comparison to
r=16. Here, results are shown for 4 different SA codebooks
(identified with prefix SA) whose description is given below. In
the rest of the sections the results are presented using relevance
factor of 64.

Another factor to consider in VQ-MAP application is
number of iterations to be performed for each adaptation
data. In Table 1, results are presented for adaption done for
upto 2 iterations using 5 and 10 training utterances and the
corresponding SA codebooks are denoted as SA-5 and SA-10,
respectively. SA-10 was trained by treating SA-5 as the initial
SI codebook and using a set of 5 training utterances different
from the ones used in training SA-5. Further, notations SA-5-1
and SA-5-2 are used to represent number of iterations to 1 and
2, respectively. Similar notation is being used for the second
case of SA-10 trained using 10 adaptation utterances. In Table
I, we observe that the average LSD values for first and second
iterations do not differ significantly for both the cases of SA-5
as well as SA-10. So, in the rest of the sections the adaptation
was done using only one iteration of VQ-MAP algorithm.

B. LPC quantization analysis for SA codebooks

Before investigating the benefit of speaker adapted code-
books in speech enhancement, we investigate whether the spec-
tral representation of a speaker’s speech data improves with the
adaptation of SI codebook using training data corresponding to
that speaker. To study this we compute the LPC quantization
error for the test utterances when quantized using different

codebooks. For this we extracted LPC vectors from set of 4
test sets - T1, T2, T3 and T4, each containing 10 distinct clean
utterances with no overlap among the 4 sets, and spoken by the
same speaker as the one used in training of the SD codebook.
The duration of the individual utterances was between 3 to 5
seconds. LPC analysis was performed for each speech segment
of around 32 ms and the resulting LPC vectors were quantized
using SI, SD and SA codebooks with LSD as the error metric.
The average LSD between the original and quantized LPC
vectors for the 4 test data sets is shown in Figure 1 for SI,
SA-5, SA-10 and SD codebooks. As can be observed, for all
the 4 test data sets, the distortion value reduces with more
adaptation and shifts towards distortion value corresponding
to SD. This assures that the spectral representation of speech
data of a speaker improves with VQ-MAP adaptation of the
SI model.

In order to observe the effect of adaptation for a longer
time, we performed incremental adaptation with multiple sets
of 5 training utterances. We considered a total of 33 sets of
such training utterances to generate SA-5, SA-10 upto SA-165
incrementally and in a sequential manner. The result for one
test set T1, as shown in Figure 2, indicates that the adaptation
positively takes the SI codebook spectral distribution to that
of SD codebook. Also, it was observed that significant drop in
LSD values occurred with the initial set of training data itself.
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Fig. 1: Average log-spectral distortion (dB) for SA codebooks
adapted using different training sets
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Fig. 2: Average log-spectral distortion (dB) for SA codebooks
adapted incrementally and sequentially using 33 training sets
containing 5 utterances each

C. Speech Enhancement using SA codebooks
In this section, we investigate whether the advantage of SA

codebooks over SI translates in better speech enhancement.
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Fig. 3: ∆SSNR for SA codebooks adapted using different
training sets, at 5 dB input SNR

The input noisy files for the experiments were obtained by
adding non-stationary traffic noise at an SNR level of 0 and 5
dB to each of the four test sets of 10 clean utterances - T1, T2,
T3 and T4, used in the previous subsection. A matching noise
codebook was generated using the traffic noise data with LPC
order 6 as in [11]. The noisy files were processed using SI, SA-
5, SA-10 and SD codebooks using CBSE algorithm of [3]. For
reference, speech enhancement reults were also obtained using
a noise estimation scheme [14]. For measuring enhancement
performance, two metrics were used: the improvement in
segmental SNR (SSNR), referred to as ∆SSNR (in dB) and
improvement in PESQ [15] measure, referred to as ∆PESQ,
both averaged over all the 10 enhanced utterances of each
of the four sets of test utterances. PESQ has been found to
correlate well with subjective quality of the speech whereas
SSNR provides objective measure for evaluating intelligibility
of the speech.

Figures 3 and 4 provide ∆SSNR (in dB) and ∆PESQ
values, respectively, for SA codebooks trained using 5 and
10 training utterances represented by SA-5 and SA-10 for the
case of 5 dB input SNR. In both the evaluation measures, we
observe CBSE based approaches provide better results than
reference speech enhancement algorithm. Further for both the
measures there is improvement in enhancement with adaptation
of SI codebook compared to that of SI performance. This was
observed when moving from SI to SA-5 as well as from SA-5
to SA-10. In the case of PESQ score, the overall improvement
due to adaptation is around 0.02. The improvement is more
pronounced in the case of ∆SSNR where the performance of
SA-10 improves by almost 0.5 dB reaching close to that of the
corresponding values of SD codebook for all the test utterances
except one. Thus, a small amount of adaptation data suffices
to reach close to SD performance in terms of improvement
in intelligibility of the speech. Even in the case of ∆PESQ,
SA-10 moves noticeably close to that of SD performance in
comparison to SI in two of the four test sets. Similar pattern
of observations as above were found in the case of 0 dB input
SNR as shown in Tables II and III for ∆SSNR and ∆PESQ,
respectively.

IV. CONCLUSION

Speech enhancement using model based approaches such
as codebook based techniques rely on speaker independent (SI)
models. However, for applications such as mobile telephony,
exploiting a specific speaker’s data can result in better en-
hancement. The practical difficulty here lies in unavailability

Reference SI SA-5 SA-10 SD

0.15

0.2

0.25

0.3

0.35

Im
pr

ov
em

en
t

in
PE

SQ
sc

or
e

:
∆

PE
SQ T1

T2
T3
T4

Fig. 4: ∆PESQ for SA codebooks adapted using different
training sets, at 5 dB input SNR

TABLE II: ∆SSNR for SA codebooks adapted using different
training sets, at 0 dB input SNR

Test sets Reference SI SA-5 SA-10 SD

T1 -0.97 0.33 0.44 0.65 0.89
T2 -2.95 -2.87 -1.57 -1.45 -1.37
T3 -0.86 -0.28 -0.01 0.23 0.29
T4 -0.58 -0.41 -0.22 -0.92 0.12

TABLE III: ∆PESQ for SA codebooks adapted using different
training sets, at 0 dB input SNR

Test sets Reference SI SA-5 SA-10 SD

T1 0.09 0.33 0.34 0.34 0.43
T2 0.12 0.25 0.29 0.30 0.39
T3 0.23 0.33 0.36 0.36 0.39
T4 0.23 0.35 0.37 0.38 0.41

of sufficient speaker data for generating speaker dependent
(SD) models. In this work, we investigated adaptation of SI
codebook to SA codebooks and using them for speech en-
hancement. The usage of speaker adapted codebooks in speech
enhancement has not been studied so far. For performing
adaption of SI codebook of linear predictive coefficients of
speech data, vector quantization maximum a posteriori (VQ-
MAP) algorithm was used. It was found that the adaptation
performed provides better representation of spectral space
of the speaker’s speech data compared to SI codebook and
also translates into improvement in speech enhancement in
comparison to SI codebook. Further, it was also found that
with significantly lesser amount of adaptation data compared
to that required for training a SD model, the speaker adapted
codebook speech enhancement performance reaches closer
to that of SD codebook. This is mainly because of proper
exploitation by the speaker adapted codebook of the underlying
spectral space distribution of the SI models trained using large
amount of speech data from many speakers. The above results
clubbed with the context dependent Bayesian framework of
[11] indicate that speaker adaptation is a promising approach
for speech enhancement applications involving one or few
speakers such as mobile phone usage. In future, we intend
to extend this work to DNN-based acoustic models.
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