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Abstract—Sparsity is an often desired property in machine learning
and signal processing problems. Recently, techniques such as screening
rules were proposed to exploit sparsity in order to diminish the com-
putational requirements of large and huge-scale optimization problems.
Nevertheless, existing methods provide rough estimations of the solution
support discarding only a few entries in the solution, thus limiting the
desired computational savings. In this paper, we propose a simple and
computationally cheap modification for safe screening rules based on
automatic thresholding and the observation that the screening metric has
a distribution that, for practical purposes, can be considered unimodal.
The proposed method is evaluated for MEG / EEG source imaging and
image classification. Computational results indicate that the proposed
screening scheme outperforms the safe method costing only minor losses
in accuracy and yields approximate speedups of up to 167.59 for MEG
/ EEG source imaging, and up to 2.12 for image classification.

Index Terms—Sparsity, screening rules, adaptive thresholding

I. INTRODUCTION

Machine learning models are the most used solutions for a wide
range of applications in academia and industry. Nevertheless, the
computational requirements to implement said models are exorbitant
for real applications. On the other hand, while sparsity-inducing reg-
ularization is often used as a mean to prevent overfitting, exploiting
it to achieve computational savings remains an area in development.

Screening rules [1]-[11] are a family of methods that use spar-
sity for problem size reduction in sparse optimization problems
by exploiting the structure of the original and its associated dual
problems. These techniques have demonstrated to be effective for
feature elimination by estimating and tracking the support of the
solutions of optimization problems. In general, screening techniques
arise as a consequence of the generalized Kuhn-Tucker theorem i.e.
Karush-Kuhn-Tucker (KKT) conditions [12]. For an optimization
problem with a sparsity-inducing regularization and matrix system
X € R™*™, its associated primal-dual pair can be expressed as
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where f and ¢ are convex functions (f is L-smooth and g
is non-smooth and separable) with Fenchel conjugates f* and
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g”*, respectively, and O™ and 6( are the primal and dual
solutions. The KKT conditions for this pair of problems are
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The screening rule stem for discarding the k-th feature from (2a),
and is expressed as

x76" ¢ ag (Q“)) Qa) 6

Ty = Hkaé“)H <1200 =0, 3)

This research was supported by the Army Research Office (ARO) under
Grant W911NF-22-1-0296.

979-8-3503-3959-8/23/$31.00 ©2023 IEEE

. . . . AR . .
Screening rule (3) is not applicable since © ° is not available,
so instead the safe screening rule, which guarantees to only discard
non-contributing features and that stems from assuming a region R

(known as safe region) that contains é( >, is used
W, = max HXQGH <1500 -0, @)
ecRr o " ’

where ¥y, is a quantity that does not depend on é(k). Nevertheless,
since typically I'y < Wy, this rule can predict false non-zeros when
used to estimate the true support of the solution.

In this paper, we propose a method based on automatic thresh-
olding to improve the support estimation obtained from safe screen-
ing when the regularization function is a sparsity-promoting non-
overlapping group norm. This class of problems encompasses mul-
titask and multiclass learning models. The way it interacts with the
other screening computation steps is detailed in the Figure 1. The
proposed method considers that (3) can be generalized as

¥, <t—Qp =0, 5)

where ¢ is a threshold that controls the number of discarded features.
The threshold computation is based on the interpreting I' as a measure
of the contribution of each one of the features / atoms that has an
unimodal distribution, an observation which, to our knowledge, has
not been exploited in existing screening schemes.

The proposed method was built on top of static safe screening
rules, thus works as a preprocessing step (discards features prior to
optimization time), and was embedded onto the accelerated proximal
gradient (APG) method [13] and tested for the identifying active
brain regions and image classification tasks. The remainder of this
document is structured as follows. Previous works on screening rules
are briefly presented in Section II. Section III presents our proposed
approach. Computational experiments and results are presented in
Section IV. Finally, the conclusions are stated in Section V.

II. PREVIOUS RELATED WORK

Two main classes of screening methods can be distinguished
depending on whether they ensure or not only non-contributing
features to the solution are discarded. Safe screening rules are those
that guarantee to only eliminate features non-contributing features,
and are based on constructing a region R that contains é(/\). The
first safe rules to be proposed were aimed at the class of ¢;-norm
regularized optimization problems [1], [3] as a preprocessing step
to optimization solvers. These rules were expanded to be applicable
to constrained problems [4] and group sparse regularized problems
[14]. Further improvements include the formulation of the sequential
safe screening rules [1] that exploit the idea of refining the estimated
support for each hyperparameter value in a warm start sequence,
and the dynamic safe screening rules [9], [10] that allowed for the
estimated support to be refined at optimization time. Finally, other
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Fig. 1: Workflow for the use of screening rules for support estimation. In cyan is highlighted the block that is the focus of this work.
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Fig. 2: Observed histograms of ® (at A = 1072 - \x) for the data sets used in the tasks of study in this work

developments explored the choice for the region R e.g. ball (safe
sphere) [1], [4], [5], ellipsoid [7], dome [8], [15], among others.

Strong screening rules do not guarantee to only discard non-
contributing features. Because of that, they are deemed too aggressive
and thus need a check on the KKT conditions to reinsert erroneously
discarded features. These were initially proposed for ¢;-norm regular-
ized problems in [2], expanded to other problems such as the Sorted
L-One Penalized Estimation (SLOPE) [11], and, recently, combined
with safe screening for LASSO-type problems [16].

III. PROPOSED METHOD
A. Distribution of the screening metric

It is important noticing that the dual problem (1b) consists on a
data fidelity term that fits the solution to the observed information,
and a regularization term that imposes a dependency to the matrix X
of the problem. Then, the dual solution éo‘ corresponds to what the
observed information should be for the primal solution Q(A) i.e. a sort
of correct information. Then, I' is the correlation between each one
of the features and the correct information, so it can be interpreted
as a measure of how much a feature contributes to the solution Q;CM.

In the context of sparse optimization, non-contributing features
reach low values of I (since the correct information does not degend
on non-contributing features). Moreover, if the primal solution Q : is
highly sparse, there is a high number of non-contributing features and
their corresponding values in I' will be low. So, under this conditions,
the distribution of I can be assumed to be unimodal with the modal
value being the value corresponding to non-contributing features.

In practice, ¥ is used instead of I" to formulate computationally
applicable screening rules. It has been demonstrated [6] that the k-th
value of ¥ is bounded according to

where diam(R) is the diameter of the region R i.e. the distance
between the two farthest points in R. On the other hand, the
computationally applicable rules often arise from using a known dual
point P € R into (10) to arrive to a quantities that are feasible to be
computed. These quantities form the actual screening metric ®, for
which the k-th component is often computed as

@ = [ Xk, Pl + [ Xk - |6 =P, @)

where ¥;, < ®;. By considering
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and when used with (6) into (7), ® can be bounded as

A (A

Finally, if o™V is sparse, then I' can be assumed to have unimodal
distribution with mode I'moge. In turn, the distribution of ® can be
considered approximately unimodal with mode ® o4 such that

Pmnde S Qm()de S Fmode + 2. D -diam (:R) y (10)

i.e. the mode is of ® is bounded. Observations made on the screening
metric, that are listed in Figure 2, corroborate that the unimodality
assumption on the screening metric is valid.

B. Threshold computation

In order to compute the threshold ¢, we assume that ® has an
unimodal distribution, then, its histogram, from which an idealized
though faithful representation can be observed in Figure 3, can be
analyzed to formulate a rule for the computation of ¢. A basic criteria
would be to take a threshold greater than ®m.ge to discard with
great probability the values associated with non-contributing features.
Nevertheless, in practice, this strategy can be either too conservative
or too aggressive depending on the location of the threshold for safe
screening (which is equal to one).
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Fig. 3: Idealized representation of the histogram of ®
The following values can be extracted from the histogram of ®
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TABLE I: Mathematical elements used to apply safe screening rules for the cases of study: MEG / EEG experiment modeled as multitask
LASSO, and image classification modeled as sparse multinomial logistic regression. It is worth noting that in this table, £2, ©, Z are matrices
(Z € R™*™ to compute of Amax and L for sparse multinomial logistic regression), and X is the matrix of the system.

Multitask Sparse multinomial
LASSO logistic regression
5 () % 12— Z||2F -3 . > [Z © softmax ()], ,
* 2 2
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where @, is a value corresponding to the threshold for unimodal data
that can be computed by using techniques such as [17], and ®; can
be computed similarly for the left part of the histogram.

The proposed criteria for the computation of ¢ takes into account
the shape of the histogram of ®, and is crafted such that the
resulting value of ¢ is greater than one (to achieve more computational
savings than safe screening). Before analyzing the histogram of ® to
formulate a rule for the computation of ¢, it is important noting that

(A
if ®max < 1, then the solution of the problem, denoted by Q( ),
is all-zero, since safe thresholding should discard all features. For
that reason, in this case, it is not necessary to compute ¢. Then, the

following cases for the computation of ¢ can be distinguished:

e ®rote < 1 < Prax: This indicates that o™ is highly sparse,
then ¢ can be chosen in [max (1,®,),®ma[. In practice, for
0 < ap < 1, the following rule can be applied

t=ap -max(1,®,) + (1 — o) - Pmax- (12)

e 1 < ®Ppee and the histogram of @ is not left skewed: This
indicates that Q(M is moderately sparse. If the histogram of ®
is right skewed, then an aggressive strategy can be applied. It
was observed that ¢ can be reasonably chosen in [®moge, @r].
Then, by considering 0 < a1 < 1, ¢ can be chosen as

t=aa 'Qmode‘f'(l_al)'@'r- (13)

On the other hand, if the histogram of ® is also not right skewed,
t can be reasonably chosen in Jmax (1,®;), ®mod]. Then, by
considering 0 < a2 < 1, ¢ can be chosen as

t =z -max (1,®;) + (1 — a2) - Pmode- (14)

e ®;, < 1 < ®Ppoee and the histogram of ® is left skewed:
This indicates that Q( could be moderately sparse, and then
11, ®mode] can be considered a reasonable range for ¢. In practice,
it suffices to apply, for 0 < az < 1, the following rule

t:()é3+(1—013)'q)modc~ (15)

e 1 < ®; and the histogram of @ is left skewed: This indicates
NEN
that Q( ) is not sparse or lowly sparse. Considering the latter
case, then ¢ can be reasonably chosen in Jmax (1, ®min) , ®;]. In
practice, it suffices to apply, for 0 < a4 < 1, the following rule
t:a4-max(l,@min)+(1fa4)~<1>l. (16)
C. Feature correction

Since the value of ¢ is greater than one (which is the value for
the safe screening threshold), our proposed method might discard
relevant features. In the same way to the strong screening rules [2],

this undesired effect can be mitigated by performing a check on
the KKT conditions to reinsert erroneously discarded contributing
features in the optimization procedure.

IV. EXPERIMENTS AND RESULTS
A. Experiments settings

Computational tests were carried on an Intel i7-2600K (32 GB
RAM, 8 MB cache, 3.4 GHz). The proposed method was embedded
into the APG solver, and will be evaluated using the following tasks:

« MEG / EEG source imaging: Modeled as multitask LASSO.
The results of this task will be assessed using relative error for
reconstruction of measurements.

o Image classification: Modeled as sparse multinomial logistic
regression. The results of this task will be assessed using the
accuracy in training and test set.

All these tasks can be modeled as optimization problems of the
form (la). The proposed method was tested for static gap safe
screening with ball as the safe region [18]. The elements needed
to perform gap safe screening for each one of the cases of study are
detailed in Table I i.e. loss and regularization functions, gradient and
dual of the loss function, Amax (minimum value of the hyperparameter
A for which the solution of the problem is all-zero), and Lipschitz
constant L. Other mathematical elements used in Table I include the
softmax function which is defined, for a matrix X € R™*", as

ep(Xpo1)” ]

Srzo e (Xp—1,k)

T
softmax (X) = fipl(xio) ,
o exp(Xo,x)
a7
and is part of the sparse multinomial logistic regression which models
image classification in this work, and NH that represents the negative

entropy function and is defined, for a vector x € R", as

NH (x) = ZZ;S xi - log (xx) if Z:;; xr =1 and x > 0,
400 if otherwise.
(18)
B. Computational results

Cardinality (percentage of detected active features), processing
time (in seconds), and quality metrics are measured for a grid of 20
hyperparameter values (10% - Amax With k = —2,—1.9,...,—0.1). It
is important to mention that the horizontal axis in the Figures 4, 5
and 6 is the relative hyperparameter i.e. A normalized with respect
to Amax. Three versions are tested for each one of the cases of study:
optimization without screening, with static gap safe screening rules
[6], and with static gap safe screening enhanced with the proposed
adaptive thresholding scheme, which are labeled as vanilla, static-
gapsafe and proposed, respectively. In all the tests, for the proposed
method we considered ap = 0.75, and o1 = a2 = a3 = g = 0.25.
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Fig. 4: Computational results for the MEG / EEG source imaging experiment

1) MEG / EEG source imaging: Electroencephalography (EEG)
and magnetoencephalography (MEG) are brain imaging modalities
that allow to identify active brain regions. Typically, this problem
consists on solving a multitask regression problem with squared loss
where every task corresponds to a time instant. Nevertheless, it is
valid to impose a temporal stationary assumption i.e. the recovered
sources are identical during a short time interval, then, this task can
be modeled as a multitask LASSO [19]. This experiment used a
joint MEG / EEG data set (see [18] for more details) with number
of sensors n = 360 (301 MEG and 59 EEG sensors), number of
possible sources is p = 22494, and number of time instants ¢ = 20.

Computational results for this experiment can be observed in
Figure 4. It is clear our method discards significantly more features
than safe screening (more noticeable for small values of A) while
having no drop in quality in terms of relative error . In terms of speed,
the proposed scheme yields a speedup of up to 167.59 approximately,
and it is significantly faster than safe screening for small values of A,
thus our proposed method exploits better the sparsity of the solution
than safe screening in this experiment.

2) Image classification: The image classification experiments
use sparse multinomial logistic regression as the model, and applies
it to the MNIST and the Fashion-MNIST data sets. The MNIST data
set [20] consists on size-normalized and centered 28 x 28 grayscale
images of 70000 handwritten digits organized in 10 classes. On the
other hand, the Fashion-MNIST dataset [21] consists on 28 X 28
grayscale images of 70000 fashion products from 10 classes, with
7000 images per class. In both data sets, the training and test sets
have 60000 and 10000 images, respectively.

Computational results for image classification using the MNIST
and the Fashion-MNIST data sets can be observed in Figures 5 and
6, respectively. It is important mentioning that our proposed method
discards more features than safe screening. Despite the potential
unsafe behavior of our proposed method (for the chosen parameters),
the accuracy results (in both training and test sets) indicate that our
proposed technique only produces zero or minor losses, which means
that mostly features with zero or small contribution were discarded.
In terms of performance, our proposed method is faster than safe
screening, and yields speedups of up to 1.5 and 2.12 for the MNIST
and the Fashion-MNIST data sets, respectively.

V. CONCLUSIONS

A new method for feature screening based on the observation
that the measure related to the contribution of each feature to the
solution has unimodal distribution was proposed. To the best of our
knowledge, our key observation, i.e. in praxis, the histogram of the
screening metric ® is unimodal, has not been exploited before. The
efficiency of our proposed screening method was demonstrated on
experiments using medical and computer vision data. Experimental
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Fig. 5: Computational results for the MNIST data set
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Fig. 6: Computational results for the Fashion-MNIST data set

results suggest that our proposed method, despite the additional
computational overhead it introduces over safe screening, improves
the acceleration of optimization solvers targeting sparse regularization
beyond what safe screening allows, while yielding either zero or only
some minor losses in quality metrics.
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