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Abstract—In the finance industry, real-world data are affected
by noise, which comes from several external sources. This makes
it challenging to select optimal portfolios for profitable investment
strategies. Therefore, noise removal (or denoising) has become
important for investors to create accurate investment models
that guarantee better returns. In this paper, we propose a novel
dictionary learning-based denoising approach for financial time
series. The transform matrix in dictionary learning is built by
training the noisy data with a K-singular value decomposition (K-
SVD) algorithm. We evaluated the effectiveness of the proposed
method using the 30 Fama French portfolio (FF30) as sample
data. Furthermore, the out-of-sample performance of the denois-
ing approach is tested under a minimum-variance framework.
Empirical results prove that the proposed dictionary learning-
based denoising method outperforms the other benchmarks in
terms of portfolio selection.

Index Terms—Denoising, Dictionary learning, K-SVD, Portfo-
lio selection, Financial time series.

I. INTRODUCTION

Recently, optimal portfolio selection has emerged as one of
the central problems in modern investment theory. Particularly,
many research studies have focused on portfolio construction
to maximize out-of-sample performance [1]. In reality, one
important factor that influences portfolio performance, but is
sometimes underestimated is noise, which can lead to wrong
decisions in investment [2].

Stock price time series are considered to be noisy due to
many factors such as quick transmission errors, storage issues,
and a large number of transactions in a short period. Moreover,
the fact that noise is inherent in financial data results in the
deviation of the time series from its fundamental values [3].
In fact, investors that base their trading decisions on strong
historical returns without access to inside information, tend
to concentrate their strategy on those stock prices they esteem
profitable. This can change the trajectory of the time series and
lead to deviations [4]. Consequently, the forecasting models
become unstable and prone to overfitting due to the noise
impact, which gives erroneous results leading to significant
investment losses.

Several studies have been carried out on noise removal tech-
niques for portfolio management. In [5–7], wavelet decompo-
sition was used as a preprocessing technique before portfolio
selection for the asset prices of different datasets, namely
oil prices, exchange rates, and Chinese stock sectors. The
authors in [8–10] proposed different revised empirical mode
decomposition denoising methods for portfolio optimization.
Additionally, Kalman filtering was introduced into a hybrid on-
line portfolio selection model to reduce the noise from original
stock market datasets [11]. In [12], an exponential smoothing
method was applied to the covariance matrix of real financial
assets before estimating the weights of the optimal portfolio.
These studies have proven that data denoising strengthens the
performance of portfolio optimization in terms of profitability
and model accuracy.

In this paper, we propose a new portfolio selection strategy
using the dictionary learning technique as a denoiser, which
is a method for learning a sparse and over-complete repre-
sentation of the data [13]. The learning algorithm used for
generating the transform matrix is the K-singular value decom-
position (K-SVD) algorithm due to its superiority over other
transform matrices in terms of noise removal and accurate
data recovery [14]. Then, the clean stock prices are recovered
by applying the orthogonal matching pursuit algorithm. The
noise-free time series are modeled using a first-order vector
autoregressive (VAR(1)) process to estimate the covariance
matrix. The latter will be used as input for the optimization of
a minimum-variance portfolio to get the optimal asset weights.

The rest of this paper is organized as follows. In Section 2,
we give the proposed financial time series denoising method
based on dictionary learning. Section 3 introduces the portfolio
selection strategy. In Section 4, we present the empirical
results of our model. Finally, we conclude the paper in Section
5.

II. FINANCIAL TIME SERIES DENOISING WITH DICTIONARY
LEARNING

A. Sparse representation

The proposed dictionary learning method is built on the
assumption that any signal can have a sparse representation
[15]. Given an n-dimensional stock price time series pl =979-8-3503-3959-8/23/$31.00 ©2023 IEEE



(pl,1, . . . , pl,t, . . . , pl,n)
T , the problem of sparse representation

is to identify an m-dimensional s-sparse vector xl, so that the
time series pl can be represented as a linear combination of a
series of columns as follows,

pl = Dlxl + ϵl (1)

where Dl is an n × m matrix called dictionary, and its ith

column dl,i, i = 1, . . . ,m, is called a dictionary atom. The
quantity ϵl refers to the error threshold specific to the lth stock
price dataset.

From (1), the sparse representation xl of the original stock
price is intrinsically connected to the dictionary Dl. Thus, it is
important to select the right dictionary matrix [16]. Classical
choices include the discrete cosine transform (DCT), discrete
Fourier transform, and wavelet transform [17]. Alternatively,
the dictionary matrix Dl can be designed assuming that the
number of rows is larger than the number of columns. In this
work, the dictionary matrix is generated using K-singular value
decomposition (K-SVD), which is presented hereafter.

B. Dictionary learning with K-SVD algorithm

The K-SVD algorithm is a learning method that can train an
overcomplete dictionary and identify the sparse coefficients of
the original data [15]. Its objective function, for the lth stock
price, is given by,

min
Dl,Xl

∥Pl −DlXl∥2F s.t. ∀i, ∥xl,i∥0 ≤ T0 (2)

where Pl =
(
pl,1, . . . ,pl,h

)T
is an n × h matrix storing h

samples of the original stock prices, Xl = (xl,1, . . . ,xl,n)
T is

an m×h sparse coefficient matrix. The quantity T0 represents
the fixed number of assets, and F designates the Frobenius
norm.

Since the optimization problem in (2) cannot be directly
solved, we fix the term Dl to get h distinct sparse repre-
sentation problems because the penalty norm in (2) can be
expressed as,

∥Pl −DlXl∥2F =

h∑
i=1

∥pl,i −Dlxl,i∥22 (3)

These sparse representation problems are solved by the
popular orthogonal matching pursuit (OMP) algorithm [18].

Then, the matrices Dl and Xl are both fixed for the
dictionary learning step. We only update one atom dl,k of the
dictionary and its corresponding kth row xT

l,k of Xl. Equation
(3) can be rewritten as,

∥Pl −DlXl∥2F =

∥∥∥∥∥∥Pl −
m∑
j=1

dl,jx
T
l,j

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
Pl −

∑
j ̸=k

dl,jx
T
l,j

− dl,kx
T
l,k

∥∥∥∥∥∥
2

F̄

=
∥∥El,k − dl,kx

T
l,k

∥∥2
F

(4)

where El,k = Pl−
∑

j ̸=kdl,jx
T
l,j is the error matrix generated

from removing the kth atom.
The dictionary update is performed by applying the SVD

to the matrix El,k where it searches for the closest rank−1
matrix that approximates the error matrix. However, this can
cause mistakes in the xT

l,k updating since it is likely to be full
and thus changing the position of its nonzero elements [19].
To overcome this problem, we assume that the indices of all
nonzero elements in xT

l,k(i) are grouped in a set ωl,k, which
is written as,

{ωl,k} =
{
i | 1 ≤ i ≤ m,xl,k

T (i) ̸= 0
}

(5)

Let Ωl,k be an n × |ωl,k| matrix composed of one entries
in the positions (ωl,k(i), i) and zero elswhere. Multiplying (4)
by the matrix Ωl,k results in,∥∥El,kΩl,k − dl,kx

T
l,kΩl,k

∥∥2
F
=

∥∥∥ER
l,k − dl,kx

R
l,k

∥∥∥2
F

(6)

where ER
l,k = El,kΩl,k and xR

l,k = xT
l,kΩl,k are respectively

the shrunk error matrix and row vector after removing the zero
entries.

The SVD method is directly performed on ER
l,k to get its

decomposition ER
l,k = U∆V T . The first column of U is

regarded as a solution for dl,k, while the solution of xl,k
R is

the multiplication result of the first column of V and ∆(1, 1).
Algorithm 1 shows the dictionary learning process by K-SVD.
The resulting dictionary and sparse representation make it
possible to obtain a denoised time series of the stock price
pl.

III. PORTFOLIO SELECTION

The denoised stock prices provided by the proposed denois-
ing scheme based on dictionary learning are used for optimal
portfolio selection. We present hereafter the chosen models for
data estimation and portfolio optimization.

A. Financial data modeling
For stationarity reasons, we used the returns, instead of

stock price, to represent the portfolio [20]. An asset’s return
refers to the gain or loss that is realized from holding that asset
over a period of time. Let r be the returns vector associated
with the lth dataset. Its tth element is given by,

rl,t = pl,t − pl,t−1 (7)

Assuming that the number of total assets to be managed
is h. The corresponding vector returns at time t is rt =
(r1,t, . . . , rl,t, . . . , rh,t)

T . The h stock returns can be modeled
using a first-order vector autoregressive (VAR(1)) as [21],

rt = r̂t−1A+ et (8)

where r̂t−1 is an h-dimensional predictor of rt−1 using
historical returns up to t−1, the square matrix A whose size is
h× h contains the autoregressive coefficients, and et is an h-
dimentional vector of additive white Gaussian noise (AWGN)
with zero mean and covariance matrix Σ. Modeling the h
stock returns according to (8) results in estimated returns r̂t
and an estimated covariance Σ̂ [22].



Algorithm 1: The K-SVD algorithm for dictionary
learning

Input: Sample training stock price Pl =
{
pl,i

}h

i=1
Output: Learned dictionary Dl, sparse representation

of price time series Xl

Parameters: Thresholding error ϵ0, number of price
samples h, iterations number (iter),
dictionary size m

Initialization: Initial dictionary D0
l , updating step

J = 1
while J ≤ iter do

1) Sparse coding:
Use OMP to find the sparse representation vectors
xl,i for each sample price pl,i according to the
following, xl,i =

argmin
D0

l

m∑
j=1

∥xl,i∥0 , s.t.
∥∥Pl −D0

l xl,i

∥∥ < ϵ0

2) Dictionary update:
for each atom k = 1, . . . ,m do

• Identify the group of indices
{ωl,k} =

{
i | 1 ≤ i ≤ m,xT

l,k(i) ̸= 0
}

• Compute the error matrix
El,k = Pl −

∑
j ̸=kdl,jx

T
l,j

• Define matrix Ωl,k and get ER
l,k = El,kΩl,k

• Apply SVD on ER
l,k = U∆V T

• Update the kth column of D0
l with the first

column of U and xR
l,k with the first column

of V multiplied by ∆(1, 1).

J = J + 1

B. Minimum-variance portfolio optimization

A portfolio is an efficient financial management approach
that holds a collection of financial assets. It can be constructed
depending on an individual’s investment goals, risk tolerance,
and time horizon. The minimum-variance portfolio (MVP)
model is a special case of the mean-variance portfolio model,
which is based on the covariance estimation only ignoring the
estimation of the expected returns [23].

Suppose that a portfolio is characterized by its weight
vector denoted w. The MVP is the solution to the constrained
quadratic programming problem given by,

ŵ = argmin
w

wT Σ̂w

s.t. 1hw = 1
(9)

where ŵ is the estimated vector of the portfolio weights and
1h is the h-dimensional vector of ones. Once the estimate ŵ
of the weights vector is obtained, the mean and the variance of
the portfolio correspond to ŵTµ and ŵT Σ̂ŵ respectively. The
h-dimensional vector µ = E(r̂t) gives the expected returns
for the h assets.

To evaluate the quality of the portfolio, we consider three
common performance measures to evaluate portfolios, namely

the Sharpe ratio (SR), tracking error (TE), and information
ratio (IR). The SR is a metric often used for estimating a
portfolio’s return [24]. It is expressed as,

SR =
ŵTµ√
ŵT Σ̂ŵ

(10)

On the other hand, TE is a statistical metric that measures
the volatility of the portfolio relative to a carefully chosen
benchmark [25]. It is given by,

TE =
√

var (r̂p − r̂b) (11)

where, in our case, r̂p is the expected return of the portfolio
using denoised data and r̂b is the expected return of the
portfolio using the original data, that we designate as the
benchmark. When the portfolio’s returns are more volatile than
the benchmark’s returns, the TE value is high, while a low TE
value means that the portfolio’s performance is close to that
of the benchmark.

Once we get the TE measure, the IR metric is calculated as
follows [25],

IR =
r̂p − r̂b
TE

(12)

The IR metric determines whether the portfolio generates
excess returns compared to the benchmark, which means that
a negative IR value proves that the portfolio underperforms its
benchmark.

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed dictionary
learning-based denoising method for portfolio selection, we
considered the industrial portfolio from Fama-French com-
posed of 30 assets (FF30). The data was acquired from the
library of Dr. Kenneth French’s page in https://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data library.html.

The chosen period ranges from January 27th, 2010 to
December 31th, 2019. The asset time series are divided into
a training set and a testing set with a ratio of 9:1. The tests
are performed on the Matlab R2021a platform installed on a
PC with 16G RAM and a 1.6 GHz i7-7Y75 processor.

We applied the K-SVD algorithm on the training set to
perform dictionary learning with a sampling rate of 50%. The
dictionary is initialized with an overcomplete DCT dictionary,
and the clean data is recovered using the OMP algorithm.

Figure 1 shows the average returns of a chosen asset (Tele-
com) taken from the universe of FF30. Samples of size 100
are presented from the original asset and the corresponding
denoised data, either by DCT overcomplete dictionary or
the K-SVD learning algorithm. We can observe that the de-
noised sample using the DCT dictionary has high fluctuations
compared to the denoised sample by the dictionary resulting
from the K-SVD approach. This proves the superiority of the
proposed method in terms of its denoising capability.

Figure 2 depicts the performance of the proposed K-SVD-
based denoising approach in terms of the asset prices correla-
tion. The results are compared with those obtained using the



0 10 20 30 40 50 60 70 80 90 100
Time (days)

-2

-1

0

1

2

A
v

er
ag

e 
re

tu
rn

Original sample

Denoised sample by DCT

(a)

0 10 20 30 40 50 60 70 80 90 100

Time(days)

-2

-1

0

1

2

A
v
er

ag
e 

re
tu

rn

Original sample

Denoised sample by K-SVD

(b)

Fig. 1: Sample signals of size 100 of the original time series
and its denoising using (a) the DCT overcomplete dictionary
and (b) the K-SVD learning method for Telecoms the 21th

asset of portfolio FF30.
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Fig. 2: Correlation of asset prices for (a) the original time
series, the denoised asset prices using (b) the DCT dictionary,
and (c) the K-SVD method.

DCT dictionary. It is clearly seen that the considered industrial
portfolio is partitioned into distinct clusters. This proves that
the dependencies between assets, which are influenced by
external factors, are inherent in the time series. Furthermore,
it is observed that the K-SVD based denoising method results
in a correlation matrix that is less clustered compared to that
corresponding to the original data. Also, many dependencies

TABLE I: Performance comparison based on SR, TE, IR,
and sparsity of the portfolios FF30-Original, FF30-DCT, and
FF30-KSVD.

Portfolio SR TE IR Sparsity
FF30-Original 0.0882 − − 9

FF30-DCT 0.0826 0.1042 −0.0094 12
FF30-KSVD 0.0973 0.3751 0.1131 10
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Fig. 3: Cumulative profit and loss of the portfolios FF30-
Original, FF30-DCT, and FF30-KSVD.

between assets have been lowered, while preserving the most
concentrated ones.

Once the denoised datasets are acquired, we estimate each
asset universe using a VAR(1) model to get the covariance
matrix of the portfolio. The mean of the portfolio is gener-
ated as a vector of the assets’ average means. The obtained
covariance is used as input in a minimum variance portfolio
framework to get the optimal weight vector of the assets. We
designate the portfolio associated with the original dataset,
DCT denoising, and K-SVD denoising by FF30-Original,
FF30-DCT, and FF30-KSVD respectively.

Table I presents the SR, TE, IR, and sparsity level results of
the proposed dictionary learning-based method (FF30-KSVD)
compared to the benchmark (FF30-Original) and a portfolio
using another transform matrix (FF30-DCT). The FF30-KSVD
outperforms the other portfolios in terms of SR, TE, and IR.
The TE metric shows that the used strategy generates enough
volatility compared to the benchmark and the positive IR
measure proves that these fluctuations result in positive returns.
As for the FF30-DCT portfolio, the negative value of IR means
that it underperforms compared to the benchmark.

Figure 3 presents the cumulative profit and loss of the three
portfolios for a testing period of the last year. The final profit of
the portfolio FF30-KSVD is higher than the profit generated by
the benchmark, while the profit of the FF30-DCT is relatively
close to the benchmark.

V. CONCLUSION

In this paper, we proposed a novel dictionary learning-
based denoising method for portfolio selection. We used the
K-SVD algorithm to train a transform matrix and the OMP to
reconstruct the acquired time series into a denoised dataset.
Then, a VAR(1) model was used for estimating the data,
and a minimum-variance portfolio was applied for optimizing
the portfolio weight vector. Empirical results proved that the
proposed denoising method for portfolio selection outperforms
the portfolio resulting from the original noisy data and the
portfolio given by the data denoised by an overcomplete
random DCT dictionary.
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