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Abstract—Increased competition between wireless communi-
cations and radar systems motivates the use of dual-function
communications-radar (DFRC) devices, which perform both
functions simultaneously. Orthogonal frequency-division mul-
tiplexing (OFDM) waveforms that echo from targets can be
compared with the transmitted waveform to isolate phase-shifts
related to targets’ ranges, velocities, azimuth angles and elevation
angles. Extending the modified matrix enhancement matrix pencil
method (MMEMP) to four dimensions (4D), this paper estimates
the target parameters, comparing estimates to the Cramér-Rao
lower bound (CRLB). A Fifth Generation New Radio-compliant
(5G NR) system is simulated, demonstrating superior precision
to Fourier- and MUSIC-based parameter estimation.

I. INTRODUCTION

Congestion of the radio frequency (RF) spectrum results
from proliferation of wireless communications [1] and radar
systems, aiming to meet demands for high-speed data trans-
fer and remote sensing, respectively. Competition lowers bit
rates in communications and reduces probability of detec-
tion in radar systems. To reduce interference, dual-function
communications-radar (DFCR) systems utilize one waveform
to perform both operations simultaneously [2]–[4]. A singular
DFCR base-station (DFBS) can achieve lower cost, space,
weight and power requirements than two independent systems.

Orthogonal frequency-division multiplexing (OFDM) com-
munications waveforms are suitable for DFBSs [5], [6].
Echoes from targets in the environment can be compared with
the transmitted waveform, isolating phase-shifts related to and
allowing estimation of ranges and velocities of those targets.
Phase shifts of the received signal across an antenna array
allow for azimuth and elevation angle estimation.

Matrix pencil (MP) techniques estimate the frequencies
from sums of complex (damped) sinusoids [7]. Application
of the one-dimensional (1D) technique has been used in
estimation of angles of arrival (AoA) for a massive antenna
array [8] and pole extraction from underwater targets [9].
Signal AoA and times of arrival have been estimated with
2D MP techniques [10], [11], which has also been used for
imaging [12]. Using 3D MP, azimuth and elevation AoA have
been estimated simultaneously with signal frequency [13].
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One method is the 2D matrix enhancement matrix pen-
cil (MEMP) technique [14] which takes a moving window
through data to enhance it, then extracts the normalized
frequencies. It is an ‘off-grid’ method: accuracy is limited
by the signal-to-noise ratio (SNR). The 2D modified MEMP
(MMEMP) technique [15] improves computational efficiency
and bypasses an error the MEMP technique is susceptible to.
It has been extended to 3D to perform AoA estimation [16].

Our previous works [17], [18] applied Fourier transforms
and the MUSIC algorithm [19] to estimate target range,
velocity, azimuth angle and elevation angles from an airborne
DFBS. These methods are ‘on-grid’: accuracy is limited by
resolution of the search space. Here we extend the MMEMP
technique to estimate target parameters in a 4D parameter
space and present results from Monte-Carlo simulations.

II. SYSTEM MODEL

The scene contains one DFBS, K point targets and user
equipment which may receive downlink communications. Rel-
ative to the DFBS, the kth point target has range, veloc-
ity, azimuth angle and elevation angle parameters wk =
[Rk, vk, θk, ϕk]. Signal echoes undergo Doppler shift fD,k =
2vkfc/c with signal carrier frequency fc and speed of light c.

OFDM waveforms transmit Nca data subcarriers simulta-
neously for each of Nsym OFDM symbols. M -quadrature
amplitude modulation (QAM) encodes binary data into the
symbols. For the ηth subcarrier and µth OFDM time slot, data
symbol dTx(η, µ) is embedded into the signal via an inverse
discrete Fourier transform (DFT) [20]. Each OFDM symbol
conveys Nca × log2(M) bits of information.

Subcarriers have spacing ∆f Hz, the ηth subcarrier hav-
ing frequency fη = η∆f Hz, and the signal bandwidth is
BW = Nca∆f Hz. Inter-carrier interference arises due to
Doppler shifts in echoes from moving targets, but subcarrier
orthogonality is ensured by limiting 10fD,k < ∆f ∀ k [6].

An OFDM symbol has period Tsym s, comprising a data
signal preceded by a guard period Tcyc s, which limits inter-
symbol interference from multipath effects. Here we assume
no multipath, but by limiting spread in target range, echoes
from different targets arrive in the same OFDM time slots,
i.e., delay between target signals is less than the guard period,
2(maxk Rk−mink Rk)/c < Tcyc. We also assume the system
doesn’t suffer from self-interference, achievable in full-duplex
systems with cancellation methods [21]–[23]. Finally, the
transmitted symbols and received echoes are assumed to have
negligible time-frequency mismatch [24].979-8-3503-3959-8/23/$31.00 ©2023 IEEE



Signals are transmitted and received by the square uniform
planar array (UPA) on the DFBS, with NBS-by-NBS isotropic
antennas in the y− z plane. Antennas use phased array beam-
forming with normalized steering vector a(θ, ϕ) ∈ CN2

BS×1

for AoA (θ, ϕ), with θ the azimuth angle and ϕ the elevation
angle. In the pth row and qth column of the UPA [25]

a(θ, ϕ; p, q) =
1

NBS
exp

[
ι2πp× d

λ
sin(θ) cos(ϕ)

]
× exp

[
ι2πq × d

λ
sin(ϕ)

]
(1)

with ι =
√
−1, horizontal and vertical antenna spacing d,

and carrier signal wavelength λ. Here, d = λ/2 m, i.e., half-
wavelength spacing (2π d

λ = π), and the DFBS boresight is
along the x-axis, i.e., transmit beamformer fBS = a(0◦, 0◦).

The targets are modelled as point scatters with time-
invariant channels. For target k with AoA (θk, ϕk)

Hk = αk(σk)a(θk, ϕk)a(θk, ϕk)
H ∈ CN2

BS×N2
BS (2)

with target radar cross-section (RCS) σk. Coefficient αk(σk)
incorporates complex normal scattering, CN (0, σ2

k), and two-
way pathloss. Pathloss uses frequency and distance dependent
terms from a close-in free space reference pathloss model [26].

The DFBS applies beamforming, then transmits the OFDM
signal which propagates and reflects from targets. A DFT
extracts data symbols from the echoes at each of the N2

BS

antennas. For the ηth subcarrier and µth OFDM time slot [17]

dRx(η, µ) = dTx(η, µ)

K∑
k=1

HkfBS exp

[
−ι2πη∆f

2Rk

c

]
× exp [ι2πµTsymfD,k] + z(η, µ) (3)

where z is additive white Gaussian noise (AWGN) with noise
power σ2

z , i.e., in the pth row and qth column of the UPA,
z(η, µ, p, q) ∼ CN (0, σ2

z). Subcarriers, indexed by η, have
a linear phase shift dependent on target range (−2∆fRk/c)
and OFDM time slots, indexed by µ, have a linear phase shift
depending on target velocity (TsymfD,k).

III. 4D MMEMP METHOD

A. Matrix enhancement

Received data symbols (3) are compared with transmitted
symbols, producing 4D element-wise division tensor, X, with
dimension lengths n = [Nca, Nsym, NBS , NBS ]. For the ηth
subcarrier, µth OFDM symbol, and antenna in the pth row and
qth column of the UPA

x(η, µ, p, q) =
dRx(η, µ, p, q)

dTx(η, µ)
(4)

with dRx(η, µ, p, q) the element (including AWGN) of (3) for
this antenna. Phase changes due to range, velocity and angular
information, are contained within the data tensor. Sturm and
Wiesbeck [6] and our previous works [17], [18] processed (4)
with Fourier transforms to estimate the range and velocities
of targets. Schmidt’s classic MUSIC algorithm [19] searched

over azimuth angles [6] or azimuth and elevation angles [17]
to estimate target angular information. These methods scan
a discrete search space, i.e., are on-grid with large search
complexity. We extend the off-grid MMEMP method [15] to
estimate target parameters within a 4D parameter space.

Entries in (4) are sums of K 4D sinusoids, exp[ι2πωk(i)],
with frequencies ωk = [fRk

, fvk
, fθk , fϕk

]. Frequencies
are normalized, i.e., fRk

∈ [0, 1) (range is non-negative),
fvk , fθk ∈ [−0.5, 0.5) and fϕk

∈ [−0.5, 0). The entries are

x(η, µ, p, q) =

K∑
k=1

βkγ
η
Rk

γµ
vk
γp
θk
γq
ϕk

+ z(η, µ, p, q) (5)

with βk complex amplitude, z(η, µ, p, q) AWGN and terms:
γRk

= exp [−ι4π∆fRk/c], γvk = exp [ι2πTsymfD,k],
γθk = exp [ιπ sin(θk) cos(ϕk)], γϕk

= exp [ιπ sin(ϕk)].
Data tensor X can then be enhanced to ensure it is full

rank. (Block) Hankel matrices are formed by taking moving
window segments, with the length of the segments denoted as
the ‘pencil parameters’ m = [mR,mv,mθ,mϕ]. In this work
m(i) = ⌊n(i)/2⌋+1, with ⌊·⌋ the floor operator and n(i) the
length of the corresponding dimension of the data tensor.

Define H(A(i, j, . . .),m, n) as the Hankel operator on ten-
sor A: [A(1, j, . . .),A(2, j, . . .), . . . ,A(m, j, . . .)] is the first
column and [A(m, j, . . .),A(m+1, j, . . .), . . . ,A(n, j, . . .)] is
the last row of the resultant Hankel (block) matrix. The 4D
enhanced matrix, X4, is given by

X1(µ, p, q) =H(x(η, µ, p, q),mR, Nca)

X2(p, q) =H(X1(µ, p, q),mv, Nsym)

X3(q) =H(X2(p, q),mϕ, NBS)

X4 =H(X3(q),mθ, NBS) (6)

where XI has
∏I

i=1 m(i)× (n(i)−m(i) + 1) elements.

B. Frequency estimation

Estimates of normalized frequencies, ω̂k, can be extracted
from X4. Singular value decomposition produces

X4 = USVH = UsSsV
H
s +UzSzV

H
z (7)

with S ∈ C
∏

m×
∏

(m−n+1) a diagonal matrix of sin-
gular values. Columns of U ∈ C

∏
m×

∏
m and V ∈

C
∏

(m−n+1)×
∏

(m−n+1) are left and right singular vectors.
Subscripts s and z indicate signals or noise respectively,

i.e., the first K columns of the parent matrix for signals and
remaining columns for noise. K is assumed to be known but
can be estimated from S by thresholding to separate signal-
related values and near-zero noise-related values [27].

Define m̄(i) =
∏

j∈[1,2,3,4],j ̸=i m(j), U1(A, i) as matrix A
with the last m̄(i) rows deleted and U2(A, i) as matrix A with
the first rows m̄(i) deleted. To extract parameters from 4D
sinusoids we also define the shuffling matrix, Pi ∈ C

∏
m×

∏
m

Pi =
[
p(1); p(1 +m(i)); . . . ; p(1 + (m̄(i)− 1)m(i));

p(2); p(2 +m(i)); . . . ; p(2 + (m̄(i)− 1)m(i));

p(3); . . . ; p(m(i) + (m̄(i)− 1)m(i))
]

(8)



where p(i) ∈ C1×
∏

m is the row vector with a one in its ith
position and zero elsewhere.

Poles γϕk
are estimated by generalized eigenvalues (GEs) of

matrix pencil U2(Us, 4)−ρ U1(Us, 4), where ρ ∈ C. With A†

the Moore-Penrose pseudoinverse of matrix A and diag(A) a
diagonal matrix, the eigenvalue decomposition (EVD)

diag(γ̂ϕk̃
) = W†(U1(Us,4)

†U2(Us, 4))W (9)

yields eigenvectors, W, and GE estimates, γ̂ϕk̃
, from which

f̂ϕk̃
= ℑ(log(γ̂ϕk̃

))/2π can be extracted and normalized.
The MEMP technique [14] estimates frequencies of the

other complex sinusoids from matrix pencils formed by shuf-
fling singular vectors Us. This results in four sets of unas-
sociated frequencies, requiring a grouping operation to yield
a group of estimated frequencies ω̂k̃ corresponding to one of
the K targets. The correlation-based nature of this operation
can result in non-associated frequencies being grouped, e.g.,
giving ω̂k = [f̂Rk̃

, f̂vk , f̂θk , f̂ϕk
] with k ̸= k̃.

Addressing this, Chen et al. [15] proposed the modified
MEMP (MMEMP) technique which simultaneously estimates
poles in 2D complex sinusoids, bypassing grouping and attain-
ing similar performance to the MEMP technique. It exploits
eigenvectors of the first matrix pencil, W, and is extended to
4D by applying shuffling matrices to Us

diag(γ̂Rk̃
) = W†(U1(P1Us, 1)

†U2(P1Us, 1))W (10)

diag(γ̂vk̃) = W†(U1(P21Us, 2)
†U2(P21Us, 2))W (11)

diag(γ̂θk̃) = W†(U1(P321Us, 3)
†U2(P321Us, 3))W (12)

with P21 = P2P1 and P321 = P3P21. Frequencies in the
same k̃th diagonal position correspond to the same target, al-
lowing estimation of target parameters ŵk̃ = [R̂k̃, v̂k̃, θ̂k̃, ϕ̂k̃].

Equations (9)-(12) provide solutions for the case where each
of parameters are distinct between targets. When multiple
targets share, e.g. the same range, the MMEMP technique
can still be applied by extracting non-diagonal block matrices
from the initial solutions of (9)-(12) and performing additional
EVDs. Treatment is not provided here due to space constraints
but it has been given in 2D [15] and 3D [16].

To assess performance, the 4D 2-norm distances ||ωk−ω̂k̃||
for k, k̃ = 1, . . . ,K, were used to match group estimates
to targets by smallest distance to largest, with each group
corresponding to a unique target. This prioritized achieving
the best possible estimate for one of the targets, rather than
minimizing a global error between estimate-target matches.

C. Cramér-Rao lower bound

The Cramér-Rao lower bound (CRLB) is a lower bound on
the variance of the unbiased estimation of the target parameters
from noisy data [25]. Unknown parameters are given in the
vector ν = [ν1;ν2; . . . ;νK ] ∈ C6K×1 with

νk = [|βk|; ∠βk; Rk; vk; θk; ϕk] ∈ C6×1 (13)

where |βk| and ∠βk are the magnitude and phase of βk.
To calculate the CRLB of each parameter, the Fisher Infor-

mation Matrix (FIM), F ∈ C6K×6K , must be calculated. The

FIM is made of block matrices Fab ∈ C6×6, where a is the
row and b the column of this block in the FIM. The entry of
the ith row and jth column in this block is

Fab(i, j) =
2

σ2
z

ℜ
(

∂xH

∂νa(i)

∂x

∂νb(j)

)
(14)

with σ2
z the noise power and x is the vector of entries in (5)

without inclusion of the AWGN, z.
From differentiation with respect to angle parameters, θk

and ϕk, entries in the FIM contain summations of trigonomet-
ric functions with phases dependent on the differences between
(θa, ϕa) and (θb, ϕb). Analytical expressions for the FIM are
not included here due to space constraints.

The CRLB for the variance of the normalized frequency
estimates in ν are diagonal elements of the inverse of the FIM,
F−1. For the UPA, the CRLB for θk and ϕk are independent
of one another [28].

IV. SIMULATION RESULTS

In Fifth Generation New Radio (5G NR) standards the
‘numerology’, µ5G, determines suitable carrier frequencies,
subcarrier spacing, ∆f = 15 × 2µ5G kHz, and OFDM
time slot length, Tsym = 1000/(14 × 2µ5G) µs [29]. In
our simulations we set carrier frequency fc = 6 GHz and
µ5G = 0 (∆f = 15 kHz, Tsym = 71.42 µs). Target
parameters are within limits, Rk ∈ [0, c/(2∆f)), vk ∈
[−c/(4Tsymfc),+c/(4Tsymfc)), θk ∈ [−π/2, π/2) and ϕk ∈
[−π/2, 0). Data tensor dimensions n, pencil parameters m,
and size of enhanced matrix X4 are changed by varying the
number of data subcarriers, OFDM symbols and number of
antennas. We demonstrate simulations with equally sized data
tensor dimensions n(i) = n for i = 1, . . . , 4, denoted n4.
Methodology and shuffling matrices provided can be applied to
data tensors with differently sized dimensions. Data is encoded
into 4-QAM symbols. The UPA boresight is along the x-axis.

Point targets each have an RCS of 1 m2 and parameters
w1 = [4300 m,−20 m/s,−10◦,−70◦], w2 = [4600 m,
10 m/s, 30◦,−35◦], and w3 = [4900 m, 30 m/s, 50◦,−20◦],
respecting constraints related to Doppler shift and guard
period. Due to DFBS beamforming, random reflection co-
efficients and pathloss, the targets have different effective
gains for received signal powers of [−2.98, 0,−20.88] dB
respectively, relative to target two. When simulated individ-
ually, the effective gain 0 dB as noise power at each antenna
is defined relative to the received signal power and SNR,
σ2
z = PRx × 10−SNR/10, where PRx is received signal power

without noise in watts. The results presented are the average
of 1, 000 realizations of the simulations with random noise.

Performance of the 4D MMEMP technique is demonstrated
by giving the mean-squared errors (MSE) against SNR for
estimates of each of the four parameters of a single target
with parameters w1. The 4D MMEMP technique is applied to
data tensors with sizes 44, 64, 84 and 104. In Fig. 1 (and Fig.
2) the solid colored lines represent MSE and dashed lines of
the same color give the CRLB for that data tensor size.



Fig. 1. Parameter estimation for one target with X ∈ C44 ,C64 ,C84 ,C104 .

The MSE linearly reduce with increasing SNR, whereas an
increase in n4 reduces MSE nonlinearly. Diminishing returns
for increasing the data tensor size are seen: increasing the data
tensor size from 44 to 64 is equivalent to a 10 dB increase in
SNR but an increase from 84 to 104 is only equivalent to a 5
dB SNR improvement. MSE of estimates for target parameters
are close to the CRLBs, but there is a slight trend for the gap
between MSE and the CRLBs to increase with increasing n4.
The parameter estimate MSE are not the same, due to scaling
between the estimates of frequencies, ω̂k, and corresponding
parameters, ŵk. MSE for the range estimates are large as
small errors in f̂Rk

scale to large R̂k errors. This could be
compensated by increasing the size of the corresponding data
tensor dimension, i.e., number of subcarriers.

In this figure the black lines represent the resolutions of
parameter estimates using the Fourier-based and MUSIC al-
gorithm. Resolutions for Fourier technique estimates of range
and velocity are given from a system using a large number of
data subcarriers and OFDM symbols as in [17], with resulting
resolutions of 3.03 m for range and 0.68 m/s for velocity
with Nca = 3300 and Nsym = 512. The 4D MMEMP-
based estimation of velocity is more precise than Fourier-based
estimation for nearly all SNRs and data tensor sizes. However,
due to frequency-parameter scaling, to outperform the Fourier
technique on range estimates the 4D MMEMP technique
requires a high SNR (20+ dB) and a large data tensor size
(large number of subcarriers). In comparison to a fine 0.1◦

search resolution possible with the MUSIC algorithm, the 4D
MMEMP technique is more precise at nearly all SNRs and

Fig. 2. Parameter estimation for three targets of different gains and X ∈ C84 .

data tensor sizes.
In Fig. 2 we present MSE for parameter estimates for

data tensor size 84 in a scenario with K = 3 targets with
parameters, w1,w2 and w3. With increasing SNR the MSE
reduce for all targets and targets with weaker reflections have
higher MSE. At low SNRs (0, 5 dB) the echo from target
three is so weak, relative to noise, that the parameters cannot
be estimated reliably, taking random values within the search
limits. The MSE for θ3 at low SNRs are higher than for ϕ3

as the search space is doubled, i.e., fθk ∈ [−0.5, 0.5) and
fϕk

∈ [−0.5, 0) ∀ k. The other targets, with stronger echoes,
are reliably estimated. Black lines are the same as in Fig. 1.

V. CONCLUSIONS

We have simulated a 5G NR-compliant OFDM-based DFCR
system, extending the MMEMP method to perform parameter
estimation in 4D, using MSE as a performance metric. Range,
velocity, azimuth angle and elevation angles have been esti-
mated for multiple point targets in a scenario.

It has been shown that the target parameters can be accu-
rately and precisely estimated with the 4D MMEMP technique
with large data tensor sizes and when the SNR is high. The
4D MMEMP technique is off-grid and so can attain higher
precision estimates than Fourier-based or MUSIC techniques.
Its performance is close to that of the CRLB.

When the SNR is low a high precision estimate can be
obtained by processing a large data tensor: similarly, high
SNRs can compensate reduction in precision for small data
tensors. For more precise estimates of a specific parameter, the
corresponding dimension of the data tensor can be increased.
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