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Abstract—Current progress in 3D Perception tasks for au-
tonomous driving relies upon neural network architectures that
their training requires a growing demand for annotated data.
However, semantic annotation of 3D scenes is a very expen-
sive and labor-intensive task. In this paper, we present an
approach for self-supervised, data-efficient learning in the context
of point contrastive learning, using two distinct pre-training
techniques towards improving performance in LiDAR-based 3D
object detection in autonomous driving. Our experimental work
relies upon standard benchmarking datasets, namely KITTI and
Waymo. Under a comprehensive evaluation framework it is
shown that, in the absence of large annotated data, the proposed
approach could achieve improved performance.

Index Terms—Self-Supervised Learning, 3D Object Detection,
LiDAR, Point Clouds

I. INTRODUCTION

Autonomous Driving (AD) is an active research field as an
increasing number of car manufacturers are launching vehicles
with AD capabilities in both development and commercial
stages. Despite the rapid progress demonstrated in recent
years, achieving autonomy remains challenging due to the
complex, unpredictable and dynamic driving environment in
which an autonomous vehicle operates. In order to acquire
an accurate estimation of the vehicle’s surroundings, AD
systems employ a ‘perception’ pipeline that, among others,
incorporates an object detection module. While camera-based
2D object detection can achieve satisfactory performance for
2D tasks, the localization of the objects in the 3D space is
not a trivial task. Towards this end, more advanced sensors
are being deployed, with a typical example being the LiDAR
(Light Detection and Ranging) sensor, which captures a 3D
point cloud, where the points correspond to the reflection of
light rays emitted 360 degrees around the vehicle.

Deep neural networks (DNNs) have established state-of-
the-art performance in a multitude of machine learning and
computer vision tasks, including 3D object detection. More-
over, the self-supervised learning (SSL) paradigm is gaining
popularity, as a means to overcome the difficulties and the
cost of constructing large-scale datasets, required to support
effective training of DNNs. These methods aim for the self-
supervised pre-training of a general feature extractor that can
be later on fine-tuned to solve a downstream task. While SSL

is a highly investigated topic for natural language and image
processing tasks, it has not reached a high maturity level
for 3D recognition tasks. Outstanding works [1], [2] in this
area have demonstrated that self-supervised pre-training on 3D
indoor scenes can lead to performance boost when fine-tuned
for 3D downstream tasks in other domains, with emphasis
on classification and semantic segmentation. However, limited
experimentation has been conducted addressing 3D object
detection.

In this paper, we investigate the use of point contrastive
learning on LiDAR-based 3D object detection for scenes in
the context of autonomous driving. Specifically, two distinct
SSL techniques, namely PointContrast and Contrastive Scene
Context are used for the pre-training of a backbone network,
towards extracting representations for each point in the point
cloud. Consecutively, the encoder of this network is utilized
as the backbone of a 3D object detector which is further fine-
tuned on the available annotated data. Extensive experimenta-
tion is performed regarding different amounts of data used for
fine-tuning.

II. RELATED WORK

LiDAR-based 3D object detectors, use solely point clouds
from LiDAR sensors, to predict an oriented 3D bounding
box (BBox) around each detected object. Recent advances
in Deep Learning along with publicly available datasets for
autonomous driving, resulted in many emerged 3D object
detection methods that can be mainly categorized according to
their input data representation into point-based, voxel-based,
projection-based and multi-representation-based methods [3],
[4], [5].

Point-based methods [6] use a PointNet++ [7] 3D backbone
and predict 3D objects directly from raw points. Voxel-based
methods first quantize the point cloud into discrete grid
representations i.e voxels as in SECOND [8] or pillars [9]
and then apply 3D convolutional or PointNet [7] backbones to
extract 3D features. Following, 3D features are projected into
a Bird’s Eye View (BEV) pseudo-image, where 2D convolu-
tional backbones are applied to perform 3D object detection.
Recently, multi-representation-based methods have emerged as
in PV-RCNN [10], a two-stage detector, which utilizes a hybrid
architecture that leverages both points and voxels for 3D object
detection. The voxel-based representation is used in the first979-8-3503-3959-8/23/$31.00 ©2023 IEEE



Fig. 1: The pipeline of our proposed method

stage of PV-RCNN for predicting 3D BBoxes and the point-
voxel representation is used in the second stage to perform 3D
BBox refinement.

Self-Supervised learning (SSL) has drawn significant at-
tention in 2D vision tasks for improving the efficiency of
learning with subsequent performance boosting in a variety
of downstream tasks. However, in the case of 3D data, self-
supervised learning is not widely adopted, with training from
scratch on the target data still being the dominant approach.

Recently, a contrastive learning framework was proposed,
namely PointContrast [1], which learns dense (point-level
or voxel-level) representations with a focus on indoor scene
point clouds. In particular, given a large unlabeled point
cloud dataset, two random views that are aligned in the same
world coordinates are sampled and dense correspondences
between points are computed. Then, two random geometric
transformations are applied in order to further transform the
point clouds into two augmented views. The concept is based
on learning point feature equivariance with respect to a set of
random geometric transformations using an encoder/decoder
architecture.

Contrastive Scene Contexts [2] extends the concept of
PointContrast, by exploiting the shape contexts of a scene. For
each point in a scene, a region around it is selected, given a
Euclidean distance threshold. This leads to the partitioning of
the scene into multiple sub-scenes, for which the contrastive
loss is computed separately. The final loss is computed by
averaging the contrastive loss of all sub-scenes.

III. METHODOLOGY

Current research work in point contrastive learning has
examined the effectiveness of PointContrast and Contrastive
Scene Contexts frameworks on downstream tasks, like indoor
and outdoor classification as well as segmentation on a dense
point cloud dataset for indoor scenes, namely S3DIS [11].
However, self-supervised learning for 3D object detection in
outdoor scenes has not been exploited, yet.

In our work, we perform pre-training with point con-
trastive learning frameworks, prior to the supervised training
of LiDAR-based 3D object detection in outdoor scenes used
to an autonomous driving context. Self-supervised pre-training

is the remedy to the lack of large annotated data by providing
useful geometric priors, that could be leveraged by existing
3D object detectors towards improved performance.

In our methodology, we have examined two distinct SSL
frameworks that have been used for 3D point cloud scenes,
namely the PointContrast and Contrastive Scene Contexts.
Both frameworks make use of a Sparse Residual U-Net (SR-
UNet) [12], [13]. Pre-training based on contrastive learning
is performed on outdoor scenes captured by a LiDAR sensor.
For each scene, two geometric transformations (T1, T2) are
applied to generate two views, respectively. To retain a useful
representation of the scene and learn beneficial priors, the
applied geometric transformations include random rotations
around the roll, pitch and yaw axes following a uniform
distribution of ϕ, θ, ψ ∈ (−10◦, 10◦) and point jittering. The
LiDAR reflection intensity attribute of the points is discarded
and only the [x, y, z] positions of the points are used.

For the 3D object detector networks, SECOND and PV-
RCNN are chosen as the baseline networks. Once the SR-
UNet [12], [13] network is pre-trained via a point contrastive
learning manner, only the encoder part is kept which is further
adopted by the SECOND and PV-RCNN 3D object detec-
tors. Consecutively, fine-tuning is performed in a supervised
manner, for the task of 3D object detection. Our proposed
methodological pipeline is shown in Fig. 1.

IV. EXPERIMENTS
A. Datasets

KITTI [14] dataset is created by Karlsruhe Institute of
Technology and Toyota Technological Institute in Chicago
and it is captured with a Velodyne HDL-64E LiDAR sensor.
For the task of 3D object detection, the dataset is split into
a training and a test set, containing 7481 and 7518 scenes,
respectively. The total number of labeled object classes is
eight, however, for the task of 3D object detection, only three
of them are used for evaluation, namely the ‘car’, ‘pedestrian’
and ‘cyclist’ classes. KITTI uses as an evaluation metric the
mean Average Precision (mAP) with an Intersection over
Union (IoU) threshold. Waymo [15] dataset contains point
cloud scenes captured from 5 LiDAR sensors, installed in a
single vehicle. Waymo contains training and validation labeled



TABLE I: Comparative performance of SECOND in 3D object detection, on the KITTI validation set. The results are reported
in mAP with 11 recall points.

Fine-tuning Pre-training Car Pedestrian Cyclist
Data Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

2%
None 77.21 65.64 57.99 44.21 37.92 33.96 51.89 32.49 30.48

PointContrast 77.24 65.95 58.30 42.72 38.06 34.11 57.20 37.80 35.73
Contrastive Scene Contexts 80.59 65.36 57.70 41.83 36.89 33.25 58.59 35.84 33.87

5%
None 84.28 71.13 66.92 40.14 37.42 33.98 63.28 41.65 39.99

PointContrast 83.59 70.72 66.97 42.61 38.76 35.12 67.39 44.77 41.70
Contrastive Scene Contexts 85.21 72.00 67.42 44.43 39.28 35.30 65.94 45.38 43.11

10%
None 85.01 74.54 67.83 43.73 41.51 37.96 65.52 48.56 46.31

PointContrast 85.78 75.36 69.66 46.38 42.22 38.01 66.20 49.60 46.98
Contrastive Scene Contexts 85.97 75.13 70.67 45.73 41.83 38.62 69.55 51.78 48.54

20%
None 87.16 76.66 74.41 49.88 45.93 43.15 75.85 57.74 54.98

PointContrast 87.26 76.86 74.97 50.45 45.78 42.64 78.66 59.59 56.21
Contrastive Scene Contexts 87.40 76.96 73.77 51.68 47.60 43.99 76.61 58.37 55.00

TABLE II: Comparative performance of PV-RCNN in 3D object detection, on the KITTI validation set. The results are reported
in mAP with 11 recall points.

Fine-tuning Pre-training Car Pedestrian Cyclist
Data Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

2%
None 76.03 63.15 57.26 38.60 35.54 32.33 52.33 34.59 32.41

PointContrast 75.10 63.25 57.27 39.85 36.26 32.27 58.92 38.27 35.72
Contrastive Scene Contexts 76.18 64.24 57.67 39.95 35.15 32.01 57.29 36.91 35.30

5%
None 87.33 76.78 71.04 54.86 48.67 43.82 72.64 52.72 49.95

PointContrast 87.81 77.13 72.97 51.27 46.27 42.14 76.49 53.64 51.13
Contrastive Scene Contexts 87.27 77.18 73.04 53.94 48.55 43.99 76.79 52.04 49.63

10%
None 88.75 78.29 76.93 49.15 45.24 41.86 80.56 59.52 56.11

PointContrast 88.77 78.50 77.40 57.44 52.12 48.22 80.84 58.52 55.09
Contrastive Scene Contexts 88.71 78.58 77.33 52.91 47.86 43.84 81.35 59.04 55.55

20%
None 89.30 78.97 78.14 59.05 53.02 49.26 84.65 63.68 61.14

PointContrast 89.09 78.85 78.02 57.90 51.65 47.91 83.32 63.73 60.66
Contrastive Scene Contexts 88.94 78.80 78.14 57.16 51.81 48.73 79.97 60.83 58.18

sets with 798 sequences (158.361 scenes) and 202 sequences
(40.077 scenes) respectively, along with a testing set with 150
sequences. For the task of 3D object detection three classes are
used, namely the ‘vehicle’, ‘pedestrian’ and ‘cyclist’ classes.
Waymo uses as an evaluation metric the mAP.

B. Pre-training with Point Contrastive Learning

Contrastive learning training, both for PointContrast and
Contrastive Scene Contexts, is performed on 80% of the KITTI
training set. The networks are trained with a batch size of 8 for
2 epochs using an Adam optimizer with a learning rate equal
to 10−3. For PointContrast, the PointInfoNCE loss is used
while for the Contrastive Scene Contexts, eight partitions are
chosen to segment the scene around each point, with radius
R1, R2 equal to 2 and 20 meters, respectively. The remainder
parameters are chosen as in the official implementations of
PointContrast and Contrastive Scene Contexts, respectively.

C. 3D Object Detection Training

3D Object Detection Training is performed on the KITTI
training set. Out of the 7481 training scenes, 3769 scenes are
used as validation samples and the rest 3712 scenes are used
as training samples. The training samples are further randomly
divided into groups of 2%, 5%, 10% and 20% containing 75,
186, 372 and 743 scenes, respectively.

SECOND and PV-RCNN are trained on each group of 2%,
5%, 10% and 20% of the training samples. Their performance
is evaluated for the 3D object detection task on the 3769
validation scenes. The networks are trained for 80 epochs with
the default training parameters and augmentations as in the
OpenPCDet [16] framework. The learned weights of the 3D
backbone from contrastive learning training remain unfrozen
for all epochs.

D. Results
Experimental results for the performance of SECOND and

PV-RCNN are shown in Table I and Table II, respectively.
As it appears, for both SECOND and PV-RCNN, pre-training
with point contrastive learning frameworks results in improved
performance, especially when a small amount of labeled
training data is used for the task of 3D object detection. This
is mostly observed in the case where 2%, 5% and 10% of the
data are used for training on the 3D object detection task.

For SECOND, training on the 20% of the data still results
in improved overall performance for all classes and difficulty
levels. However, this is not the case for PV-RCNN, as the net-
work without any pre-training achieves a higher performance
compared to its pre-trained counterparts. This can be attributed
to the fact that, due to its second stage, PV-RCNN is able
to learn more discriminative semantics from fewer samples,
compared to the single-stage detector SECOND.



TABLE III: Ablation studies on the radius hyperparameter of Contrastive Scene Contexts. Performance is reported for SECOND
in 3D object detection, on the KITTI validation set. The results are reported in mAP with 11 recall points.

Fine-tuning Method R1 R2 Car Pedestrian Cyclist
Data Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

2% SECOND

2 10 75.40 64.51 57.30 45.12 39.38 35.67 54.93 34.63 32.89
2 20 80.59 65.36 57.70 41.83 36.89 33.25 58.59 35.84 33.87
4 6 76.45 64.76 57.50 44.72 38.88 34.84 56.68 35.64 33.08
4 20 75.87 64.50 57.27 42.97 37.28 33.81 58.55 37.12 34.54

TABLE IV: Comparative performance of SECOND in 3D object detection, on the KITTI validation set. The results are reported
in mAP with 11 recall points. Pre-training with Contrastive learning is performed on Waymo dataset.

Fine-tuning Pre-training Car Pedestrian Cyclist
Data Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

2%
None 77.21 65.64 57.99 44.21 37.92 33.96 51.89 32.49 30.48

Contrastive Scene Contexts 76.81 64.77 57.37 43.29 39.50 35.51 54.56 33.99 32.10

5%
None 84.28 71.13 66.92 40.14 37.42 33.98 63.28 41.65 39.99

Contrastive Scene Contexts 84.44 70.55 66.91 42.38 37.22 33.66 62.43 42.02 39.91

10%
None 85.01 74.54 67.83 43.73 41.51 37.96 65.52 48.56 46.31

Contrastive Scene Contexts 86.34 74.80 68.31 43.94 40.43 37.22 68.25 50.52 47.62

20%
None 87.16 76.66 74.41 49.88 45.93 43.15 75.85 57.74 54.98

Contrastive Scene Contexts 86.55 76.64 73.25 46.66 42.91 40.11 76.61 58.65 55.30

E. Ablation Study

1) Local over Global Scene Contexts: For Contrastive
Scene Contexts, the hyperparameter values R1, R2 define the
receptive field of the area under which the shape contexts of
a scene are represented. Table III demonstrates the perfor-
mance of SECOND, for different R1, R2 values. A smaller
receptive field, R1, R2 equal to 2 and 10 results in increased
performance for pedestrians, followed by the receptive field
of R1, R2 equal to 4 and 6. This demonstrates the importance
of local over global contexts for pedestrian detection. For
cyclists, an increased performance is demonstrated for a larger
receptive field, when R1, R2 equal to 4 and 20, along with
R1, R2 equal to 2 and 20. Despite being an object of relatively
small spatial size, for cyclist detection, the global contexts
appear to be more important than local contexts. For cars, it
appears that a balance between local and global contexts, when
R1, R2 equal to 2 and 20, results in the best detection results.

2) SSL from other domain: For Contrastive Scene Con-
texts, the contrastive learning pre-training is also performed
in another domain for autonomous driving, namely Waymo.
The SR-UNet is trained for 1 epoch in Waymo dataset.
Table IV shows the performance for SECOND in 3D object
detection for KITTI, having as a prior the contrastive learning
from Waymo. As it appears, the performance of SECOND is
improved, especially in cases where few labeled scenes are
available. This demonstrates the potential of learning useful
geometric priors from other domains and raises a research
interest for future work.

V. CONCLUSIONS

In this paper, we investigated the use of point contrastive
learning frameworks, by learning geometric priors that are
used for the task of 3D object detection in autonomous
driving. We performed extensive experiments by adapting

and integrating two contrastive learning frameworks for self-
supervised pre-training on LiDAR point clouds. We evaluated
the effectiveness of the pre-trained geometric priors by in-
corporating them into two 3D object detector networks and
evaluated their performance for the task of 3D object detection
in KITTI dataset. Experimental results demonstrate that pre-
training with contrastive learning can increase the performance
of 3D object detectors, especially when a limited number of
labeled scenes are available. Additionally, we have performed
ablation studies for identifying the importance of local and
global contexts for each object class, along with the potential
of learning beneficial geometric priors from other domains.
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