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Abstract—The heterogeneity of omics data poses a challenge
for feature fusion in the medical field due to source differences.
This study aims to construct a fusion method that can reduce
the differences between omics data, enabling them to jointly
contribute to specific medical tasks. The multi-kernel late-fusion
method is capable of reducing the impact of these differences
by mapping the features using the most suitable single-kernel
function and then combining them in a high-dimensional space
that can effectively represent the data. However, the strict label
fitting of complex nasopharyngeal carcinoma (NPC) data samples
restricts the performance of general classifiers when using high-
dimensional features. To address this issue, this study proposes a
multi-kernel model for multi-omics feature fusion in predicting
distant metastasis of NPC patients. The proposed model employs
a multi-kernel-based Radial basis function (RBF) neural network
and introduces a label fuzzy softening method to enlarge the
margin between two classes. By mapping the original medical
omics data and reducing the differences, the proposed method
provides more degrees of freedom for label fitting, improving
the classification ability. The proposed model is evaluated on
multi-omics datasets, and the results demonstrate its strength and
effectiveness in predicting distant metastasis of NPC patients.

Keywords—Multi-omics fusion, Multi-kernel Learning, Multi-
modality

I. INTRODUCTION

NASOPHARYNGEAL carcinoma (NPC) is prevalent can-
cer among Asians [1]. Standard treatments include radio-

therapy alone for early stages and combined radiotherapy and
chemotherapy for advanced lesions [2], [3]. However, more
than 30% of patients with advanced NPC fail to respond to
treatment, mainly due to distant metastasis rather than local
recurrence [4], [5]. While doctors rely on medical imaging to
diagnose cancer stage and provide radiation therapy doses, re-
searchers have used single omics approaches such as radiomics
studies to predict NPC prognosis, achieving significant success
in predicting distant metastasis. However, the use of single
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Fig. 1: The illustration of FLS MK. S is the number of
samples. We select the omics images of one patient as xS ,
ϕk is the mapping in the k-th neuron, wk is the weight in the
k-th neuron, QA is The final mapping result (more details are
shown in section III)

omics approaches may not be sufficient, and the integration
of multiple omics data may be necessary for better prediction
accuracy.

Although signal omics are useful for expressing training
features in a model, their limited ability to cover all relevant
features can hinder learning and limit predictive performance.
In contrast, multi-omics feature fusion can improve sample
clustering, provide a better understanding of prognostic and
predictive phenotypes, dissect cellular responses to therapy,
and assist in translational research through integrative models
[6], [7], [8]. Recent evidence has shown the effectiveness
of the multi-omics approach in medical prediction tasks [9],
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[10]. Specifically, [9] use multilayer perceptron (MLP) to
reconstruct each omic with a hierarchical representation and
leverage shared self-expression coefficients to embed inter-
class and intra-class structural information. Meanwhile, [10]
consider the relationship among different omics to learn a
latent representation space using all available samples. They
use complete multi-modality data to learn a common latent
representation and incomplete multi-modality data to learn
modality-specific latent representations. In the study of NPC,
radiomics and dosiomics are correlated with distant metastasis.
However, radiomics data contain many features unrelated to
distant metastasis prediction tasks, and temporal and angular
differences exist between data from the same patient with
different medical images. Existing methods cannot address the
feature fusion challenges posed by data noise and out-of-sync
data sources.

The study conducted by [11] demonstrates that the late-
fusion method utilizing multi-kernel can mitigate the impact
of various data differences, resulting in better fusion outcomes.
The high-dimensional space created by multiple kernel func-
tions is a combination space that merges multiple feature
spaces. This combination space can incorporate the distinct
feature mapping abilities of each subspace and merge different
heterogeneous data from multiple sources. The most suitable
single kernel function individually maps the features, and the
data can be more accurately and reasonably expressed in the
new combination space. However, for the original complex
NPC data samples, the feature mapping process in high-
dimensional space lacks classification capability when dealing
with downstream tasks. Typically, multi-Kernel learning for
classification tasks aims to learn a transformation matrix that
can convert the combination of kernels into a binary label
matrix. Due to the strict label fitting and limited flexibility, the
general classifier is not very effective when employing high-
dimensional features.

This study aims to address the problem of preserving the
intrinsic geometry structure of transformed samples [12]. To
achieve this goal, [13] proposed the margin Fisher analysis
method which preserves both the intrinsic geometry structure
and the discriminant structure of samples using label infor-
mation. Some semi-supervised learning methods introduce an
adjacency graph to capture the local structure of samples and
ensure that similar samples have nearly the same labels [14],
[15]. However, to ensure that samples from the same class are
kept close together in the transformed space, it is necessary
to capture the distribution of samples from the same class by
using sample affinity.

This study proposes a novel multi-kernel model for multi-
omics feature fusion to predict distant metastasis of NPC
patients. This model serves as an automation platform for
high-throughput data processing and analysis. In the pre-
processing stage, a kernel fusion method with matrix-based
mixing weights is utilized, which allows each participating
kernel to learn independently. Additionally, to address the
problem of overfitting, label fuzzy softening is introduced,
which relaxes the strict binary label matrix into a slack variable
matrix and constructs a class compactness graph to improve
the model’s generalization performance.

II. MATERIALS

This section provides a concise overview of the NPC
data used in our experiments, covering patient demographics,
imaging acquisition protocols, preprocessing steps, and feature
extraction techniques.

A. Patients and Dataset Statistic

This section provides a brief overview of the NPC dataset
used in our experiments. To be included, patients had to
meet the following criteria: i. confirmed diagnosis of NPC,
ii. locally advanced stage I to IV cancer, and iii. availability
of pre-treatment MRI and planning CT data from participating
hospitals. The clinical endpoint selected for this study was dis-
tant metastasis, determined through fibrotic endoscopy and/or
histological/radiological examination. Patients who developed
distant metastases after completion of primary therapy were
marked as 1, while those who remained disease-free until their
last follow-up were marked as 0. The average follow-up period
was 36 months.

To construct our NPC-contraparotid dataset, we collected
medical data from 102 NPC patients undergoing radiation
therapy in Hong Kong. Each patient’s dataset included three
types of information: MR images, CECT images, and dose
data (see Fig.2). According to the clinical state, patients with
clinically documented distant metastases were marked as 1,
while those without distant metastases were marked as 0.
TableI presents NPC-to-parotid statistics.

TABLE I: The statistic of NPC-ContraParotid dataset.

Organ Datasets MRI Dose CECT Features Size

ContraParotid

CTD ✓ ✓ 7 102
MRICT ✓ ✓ 3 102
MRID ✓ ✓ 6 102

MRICTD ✓ ✓ ✓ 14 102

(a) MRI (b) CT (c) Dose

Fig. 2: The sample medical images of NPC-ContraPariod.

B. Data Processing and Feature Extraction

To optimize the consistency, reproducibility, and validity
of radiomics studies, it is crucial to preprocess the images
prior to radiomics feature extraction, given the variability in
image acquisition and reconstruction parameters within and
between medical centers. In this study, four key image prepro-
cessing steps were employed, including voxel size resampling,
VOI segmentation, image filtering, and gray-level quantization,
following the well-established recommendations in the Image



Biomarker Standardization Initiative guideline [16]. An in-
house development pipeline tool based on Python v3.7.3 was
used to perform these steps. The radiometric features were
extracted using the publicly available PyRadiomics v2.2.0 and
SimpleITK v1.2.4 packages, which were integrated into an
in-house developed Python-based v3.7.3 pipeline. In order to
select the features that contribute the most to both Radiomics
and dosiomics, a hybrid selection method was utilized.

III. METHODOLOGY

A. Multi-Kernel Ridge Regression

Multi-kernel learning is a technique that aims to improve
mapping performance by combining different kernel functions
or kernel functions with varying parameters. There are various
combinations of kernel functions, with the most commonly
used being the linear combination. Let us assume that we
have L different kernel functions, where ϕl represents the lth

function with 1 ≤ l ≤ L. In this case, a linear combination of
these kernel functions can be expressed as follows:

ϕ =

L∑
l=1

ωlϕl, (1)

where, ωl is the mixing weight for the lth kernel function,
and ϕl is the corresponding kernel function. The goal of multi-
kernel learning is to learn the optimal mixing weights for these
kernel functions to achieve better performance in mapping the
input data to the output.

In this method, we propose a novel architecture for the
Radial Basis Function (RBF) neural network [17], which
consists of an input layer, a nonlinear hidden layer, and a
linear output layer (shown in Fig.1). Let X ∈ Ra×S represent
an input dataset consisting of S samples, where each sample
x ∈ Ra×1 is represented by a number of attributes. For all
k, let mk ⊂ M ∈ Ra×K , where K is the number of neurons
in the hidden layer of the RBF network. Here, M ∈ Ra×K

comprises K number of mk ∈ Ra×1 vectors, each representing
a center point of the kernel of the kth hidden neuron. Then,
the output for each neuron can be expressed as

ϕk(x,mk) =

L∑
l=1

ωlkϕlk(x,mk), (2)

Let L be a set of different kernels in the k-th neuron, and let
l ∈ L. Then, ϕlk is the l-th primary kernel of the k-th neuron,
and ωlk is its corresponding mixing weight. Two constraints
hold on ωlk : 0 ≤ ωlk ≤ 1, and

∑L
l ωlk=1. The common set

of kernel weights for all multi-kernels, combined with these
two constraints, ensure that the participating kernels form a
convex combination.

According to RBF, for an input sample x, the corresponding
output y can be formulated as

y =

K∑
k=1

wk

L∑
l=1

ωlkϕlk(x,mk) + b, (3)

Eq.3 can be re-formulated as

y = Φ⊺w (4)

Where w = [b, w11, w12, . . . , w1K , . . . , wL1, wL2, . . . , wLK ]⊺,
Φ = [1, ϕ11(x,m1), ϕ12(x,m2), . . . , ϕ1K(x,mK), . . .,
ϕL1(x,m1), ϕL2(x,m2), . . . , ϕLK(x,mK)]⊺. Therefore, for
a training set X = [x1,x2, . . . ,xN ]⊺, the corresponding
output Y can be formulated as

Ymapping = QA (5)

Q =


1 ϕl1(x1,m1) ... ϕLK(x1,mK)
1 ϕl1(x2,m1) ... ϕLK(x2,mK)
...

...
...

...
1 ϕl1(xN ,m1) ... ϕLK(xN ,mK)

 (6)

A =


b wl1(1) ... wLK(1)
b wl1(2) ... wLK(2)
...

...
...

...
b wl1(N) ... wLK(N)


⊺

(7)

Based on the criterion of empirical and structural risk
minimization, we can optimize A by the following objective,

min
A

∥QA− Y ∥2F + λ∥A∥2F , (8)

λ is a positive regularization parameter, and λ ≥ 0.

B. Label Fuzzy Softening

Previous studies have demonstrated that learning discrimi-
native models through overfitting strictly binary label matrices
is inadequate. To address this issue, we propose an approach
that fuzzy softens the label matrix Y using two matrices, V and
Z, similar to the method employed in [18], thereby increasing
the margin between classes.

Ŷ = Y + V
⊙

Z, (9)

where,
⊙

represents the Hadamard operator, and V and Z are
defined as follows:

Vij =

{
+1, if yij = 1
−1, if yij = 0

(10)

Z =

 z11 ... z1J
... zij

...
zI1 ... zIJ


i = 1, 2, ..., I,

j = 1, 2, ..., J, zij ⩾ 0, i ̸= j.

(11)

After fuzzy softening the label, the original multi-Kernel
regression model in Eq. 8 is updated as:

min
A,Z

∥QA− (Y + V ⊙ Z)∥2F + λ∥A∥2F
s.t.Z ≥ 0

(12)



C. Overfitting Problem

Although label fuzzy softening can expand class margins
and improve classification performance, overfitting may occur
due to the degree of freedom in fitting. Thus, it is important
to suppress overfitting while seeking a more discriminative
model. To control data fitting, we perform a regularization term
operation. First, we construct an undirected graph to capture
the relationships between samples, which is defined as:

Cij =

{
e

∥xi−xj∥2

σ , if xi and xj have the same label
0

(13)
Where σ is the kernel width. From the above equation, we
observe that if two samples belong to the same class, the
closer their distance, the larger the weight. Conversely, if they
belong to different classes, the weight is 0. Therefore, when
the samples are transformed into the label space, we can use
the following objective to ensure our assumption:

min
A,Z

∑
ij

∥gj − gj∥2Cij = min
A

tr(A⊺Q⊺LQA) (14)

Where, ∥A∥2F = tr(A⊺A) = tr(AA⊺) represents the squared
Frobenius norm of the matrix A, and tr(.) is the trace operator
of a matrix. gi = xiA denotes the transformed result of the
sample xi. Minimizing this objective further ensures that gi
and gj are close in the transformed space. L is the Laplacian
matrix that can be computed by L = G − C, where G is a
diagonal matrix and its diagonal entries are defined as Gij =∑

j Cij .

By substituting Eq. 14 into Eq. 8, we propose the following
objective function for FLS MK:

min
A,Z

∥QA− (Y + V ⊙ Z∥2F + λtr(A⊺Q⊺LQA)

s.t.Z ≥ 0
(15)

IV. EXPERIMENT

We created four multi-omics datasets, each consisting of
102 samples (Table I). Radiomic features were extracted from
the planning dose map, pre-treatment contrast-enhanced CT,
and T1-weighted contrast-enhanced MR images within the
ContrasParid dataset to create a comprehensive feature set.
To showcase the proposed classification performance of our
model, we selected four models: two improved fuzzy classifi-
cation models based on SVM (FSVMs [19] and FSVMs CIP
[20]), RBFNN MK [17] to compare the effect of label soft-
ening, and Ridge Regression [21] as the baseline model for
regression analysis.

TABLE II: The ACC of NPC-ContraParotid.

Modalities Rige Regression RBFNN MK FSVMs FSVMs CIP FLS MK
CTD 91.1765 79.4118 86.1354 82.3529 91.6670

MRICT 94.1176 76.4706 82.3529 88.2358 89.5449
MRID 91.1765 55.8824 88.2353 85.2941 95.8940

MRICTD 82.3529 58.8235 77.6228 79.4118 96.0723

TABLE III: The AUC of NPC-ContraParotid.

Modalities Rige Regression RBFNN MK FSVMs FSVMs CIP FLS MK
CTD 0.8635 0.9086 0.6428 0.6471 0.9404

MRICT 0.8824 0.9123 0.6644 0.7751 0.8812
MRID 0.8304 0.7612 0.7647 0.7059 0.9471

MRICTD 0.6782 0.7474 0.5736 0.5882 0.9497

A. Settings

We employed K-fold cross-validation with a value of k = 3
for both training and testing our model. Accuracy and Area
Under the Curve (AUC) were utilized as quantitative metrics to
evaluate the performance of the model. Specifically, accuracy
was calculated as the ratio of correctly classified samples to
the total number of samples. On the other hand, AUC is a
commonly used evaluation index to measure the effectiveness
of binary classification models, indicating the probability that
a predicted positive example is ranked higher than a negative
example.

B. Expriment results

Table II demonstrates that the FLS MK model outperforms
other models in terms of ACC performance on the CTD,
MRID, and MRICTD datasets. Although the ACC score dis-
played by FLS MK on the MRICT dataset is not as high as
that of ridge regression, it can be observed from the number
of features in the dataset that FLS MK model performs better
in fusing data with multiple quantitative features, as shown
in Fig 3. Ridge regression, FSVMs, and FSVMs CIP models
can achieve ACC scores of over 90% and 80% on the CTD,
MRICT, and MRID datasets containing two modalities. How-
ever, their accuracy drops significantly for MRICTD, a dataset
with more than two modalities. In contrast, FLS MK can still
maintain a high score, indicating that the fuzzy classification
model after high-latitude mapping is more suitable for multi-
modal datasets. On the other hand, RBFNN MK has the lowest
score compared to other models, indicating that only high-
latitude mapping has no noticeable improvement effect on
classification tasks.

(a) ACC (b) AUC

Fig. 3: The results of FLS MK on NPC-ContraPariod.

The AUC results in Table III reveal that Ridge Regression,
FSVMs, and FSVMs CIP models have a significant impact
on the datasets containing two modalities, but their AUC score
drops considerably for datasets with more than two modalities.
However, FSL MK can obtain stable scores on the four divided
datasets, with the highest score of 0.9497. By comparing the
AUC and ACC scores of RBFNN MK on the four datasets,
it is confirmed that the combination of fuzzy label softening
classification and high-latitude mapping has an advantage.



C. Data distribution

Fig. 4 displays the sample distribution of the original NPC
patient dataset and the distribution after training. The MRICTD
dataset is visualized using the Principal Component Analysis
(PCA) dimensionality reduction method [22]. As shown in
Fig. 4(a), the original dataset is challenging to separate into
two categories. However, after training, the best classification
result is achieved, as demonstrated in Fig. 4(b).

(a) Before training (b) After training

Fig. 4: The sample distribution of NPC-ContraPariod
MRICTD.

V. CONCLUSIONS

We proposed a novel approach called Multi-Kernel model-
based Fuzzy Label Softening (FLS MK), which utilizes kernel
mapping to transform data into a high-dimensional space and
employs a positive matrix to soften the binary label matrix
to enhance label fitting and enlarges margins between classes.
Through a series of experiments on multi-omics datasets and
comparison with a baseline and other models, we demonstrated
the superior performance of our approach on the NPC dataset.
Our research provides a promising solution for integrating
complex medical data in disease prediction, contributing to
the field.
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