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Abstract—In recent years, Light Field (LF) technology has
shown remarkable progress in various computer vision tasks such
as depth estimation and salient object extraction. One significant
factor contributing to this advancement is the availability of
commercial LF cameras that are becoming more affordable
and sophisticated. Geometric saliency extraction has also played
a crucial role in many computer vision problems by focusing
on the most informative aspects of an image or video. In this
study, we investigate the feasibility of extracting geometric salient
directly from LF images. However, the task is challenging due
to the lack of an extensive LF dataset that could provide rich
information for image analysis. Therefore, we propose to bridge
the gap by creating a synthetic dataset of LF images, which
can be used for saliency map estimation. We further train
a popular neural network model, called EpiNET, commonly
used for depth estimation, to extract salient maps. Experimental
results demonstrate that the proposed method effectively extracts
salient maps with a 10-20% error on a custom metric. This
finding not only confirms the feasibility of the task but also paves
the way for further research in this area.

I. INTRODUCTION

One challenging problem in 3D computer vision is to define
the visual saliency of an image or an object. Visual saliency
is a metric highlighting the significance of an area in a
scene based on human visual perception. A salient part of
the scene should differ from its surrounding region due to
a difference in characteristics. More specifically, the saliency
of the 3D object can be calculated by colour changes in
its texture [1], geometric differences on its surface [2]-[5],
or even by semantic [6]-[8] and behavior supported visual
saliency [9]. Although traditional saliency extraction methods
are computationally heavy, Convolutional Neural Networks
(CNNs) have emerged as a computationally lighter approach
for saliency mapping. However, training a CNN for this task
is difficult due to the unclear definition of saliency and the
lack of saliency map datasets for meshes. Recently, LF image
processing has been gaining popularity in the computer vision
community [10]-[13]. LF cameras capture the direction of the
light and create an array of images with a small baseline
difference, making them ideal for depth map [14], [15] and
saliency map estimation [16]-[18].

In this work, we tackle the phenomenaly ill-posed problem
of estimating the geometric saliency (i.e. 3D shape frequen-
cies) from LF images. While LFs have been used for depth
estimation, the result has low resolution in the depth dimension
thus being incapable to capture geometric saliency. We argue
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that light-fields may inherently encode much more than sub-
pixel disparities and thus may be capable to capture geometric
saliency.

To achieve our aim, since no ground truth datasets exists
for geometric saliency of LF images, we propose a method-
ology for creating a synthetic LF saliency map dataset using
3D meshes. We also demonstrate the feasibility of directly
estimating saliency maps using a LF image. Our approach has
the potential to provide a lightweight and efficient solution
for saliency mapping in computer vision tasks. The key
contributions of this work can be summarized as follows:

« A methodology for creating a LF saliency map dataset
coupled to a synthetic dataset of LF images.

¢« A method for saliency map extraction of LFs using
convolutional neural networks.

« Initial evidence that geometric saliency can be captured
using deep architectures and an end-to-end pipeline for
further experimentation.

The rest of this paper is organized as follows: In Section
2, we discuss the related state-of-the-art work in this field.
Section 3 presents the necessary preliminaries. In Section 4,
we present in detail each step of our proposed method. Section
5 shows the experimental results and in Section 6 we draw the
conclusions.

II. RELATED WORK

A. LF depth estimation. Due to the very small baseline differ-
ence between the LF images, there is a lot of information that
could be used for depth estimation, similar to a classic stereo
matching scenario. A lot of methods have been suggested for
performing the depth estimation task with LF images, both
conventional and with the usage of machine learning. Wang et
al. [19] propose a method which uses estimates the occlusion
on LF images and exploits it in order to get the depth map is
a scene. Shin et al. [20] propose an end-to-end CNN which
can quickly extract the depth map of a scene from LF images.
In order to deal with the lack of datasets, they also suggest
a data augmentation technique which can be used for patch
wise training on LF images.

B. LF salient object estimation. Salient object estimation is
the task of separating an object which is considered important
in a scene from the background. Li et al. [21] suggest a
methodology by which we can pinpoint the background and
foreground of an image using conventional methods for the
extraction of the salient object. Wang et al. [22], propose a



neural network which is trained on a LF dataset that they
captured with LF cameras. Their network uses as input the
different focal stacks that we acquire with LF cameras.

C. LF datasets. With the rise of LF image processing, a new
need was created for more datasets of LF images. Because of
an increase in the use of LF cameras, due to their commercial
availability. The LF datasets that have been proposed are
separated into two main categories, which are multi-view
image datasets and focal stack datasets. The first category
takes into account the ability of a LF camera to capture the
central view with different focus points. The second category
uses the LF cameras micro lens array in order to capture
the multiple LF images which have a very small baseline
difference between them. Most of the well-known datasets
[21]-[25] have as ground truth, the depth of the central view
or the salient object of an image which can be separated from
the background. As far as we know, there is no dataset which
has as ground truth the geometrical salient areas of a mesh.

III. PRELIMINARIES AND NOTATION

In this section, we present the basic definitions and prelim-
inaries which are necessary for the complete understanding of
our assumptions and also the ground truth saliency estimation
approach, the results of which will be used for the training of
our method that will be described in Section IV.

A. Basic Definitions of 3D Meshes

In this work, we focus on triangle meshes M consisting of

n vertices v and ny faces f. Each ¢ vertex is represented by

Cartesian coordinates, denoted by v; = [x;, v, zi}T, Vi=

1,---,n. Each f; face constitutes a triangle that can be

represented by its centroid ¢; = (vj1 + V2 +v;3) /3 and

its outward unit normal n,, = |‘é“:?2:vil)x(vi3iv'fl) , Where

o 2 V1) X (Viz—v;)ll

vj1, Vj2 and v;3 are the position of the vertices that define
face fj = {le, V2, ng}, V] = 1, e, Mg

B. Spectral-Based Saliency Estimation

Firstly, the whole mesh is separated into n small, overlapped
and equal-sized patches (i.e., one patch per vertex), similar to
[2]. For each ¢ vertex v; of the mesh, a patch of £+ 1 vertices
Pi = {Vvi, Vi, Viy, -+, Vi, } is created consisting of the k
geometrical nearest vertices of vertex v;, estimated by using
the k nearest neighbors (k-nn) algorithm (typically, we set
k = 25). These patches are utilized to create n matrices N; €
RE+D%3  consisting of the k+ 1 corresponding normals [26]:

T .
N; = [ng, ng,, Ney, -+, N, ]" Vi=1,---,n (1)

Then, the covariance matrix R; = NiTNl- € R3*3 ig estimated
for each matrix N; and it is decomposed: R; = UAUT,
to a matrix U with the eigenvectors and a diagonal matrix
A = diag(\i1, \i2, Ai3) with the corresponding eigenvalues
Aij, ¥V j =1—23. Finally, the spectral saliency si; of a vertex
v; is defined as the value given by the inverse norm 2 of the
corresponding eigenvalues:

1
S14 = Vi:1,~-~,n (2)

VAL T AL+ A

We also normalize the values in order to be in the range of
[0-1], according to:

S1i — min(su)

S1i = VZ:].,,'I'L (3)

max(sy;) — min(sy;)
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Fig. 1: Framework of the proposed method.

IV. METHOD
A. Dataset creation

The basic architecture of the proposed method is briefly
presented in Fig. 1. More details about each component will
be presented in the following sections.

1) Mesh dataset: A lot of 3D objects datasets [27]-[29]
were investigated for potential utilization, however, the Google
Scanned Objects (GSO) dataset [30] was finally used since
a uniform distribution of the vertices is necessary for the
geometrical saliency map extraction. The objects of the GSO
dataset were scanned using photogrammetry techniques and
processed to create high-resolution, textured 3D models. Then,
we use the Blenders’ Remesh modifier which performs a form
of isotropic surface remeshing, to create an optimal mesh
with unified vertex distribution. Afterwards, the methodology,
presented in Section III, is used to extract the ground truth
geometrical salient features of each 3D mesh.

2) Creating the synthetic LF images dataset: To create
a dataset of LF images that are generated from 3D virtual
objects, we first need to replicate the functionality of the LF
camera microlens array. In order to do this, we utilize the
3D computer graphics software tool called Blender which has
a Python API scripting tool that allows us to easily create
add-ons. Initially, we created a script based on [31], which is



used to transform a typical Blender camera into an LF camera.
This script enables us to manage various parameters that can
be found in the design specifications of a real LF camera,
such as the focal length of the lens, the image resolution
of the sensor chip, the f-stop of the cameras, the number
of the microlens cameras, the baseline distance between the
microlens cameras and the focal distance of the cameras. We
then designed a very simple scene in Blender with our LF
camera that consistently points towards the objects we load. To
avoid any interference with the neural network, we maintain
a black background. Afterwards, we sequentially load each
object in the GSO dataset, complete with their corresponding
textures and ground truth saliency maps. We capture 81 LF
images for 9x9 input views which have a size of 512x512
pixels. Finally, we capture the saliency map of the central
view of the LF camera. By following this approach, we were
able to create a robust and reliable dataset of LF images that
are sourced from 3D virtual objects.

B. EPINet Neural Network

The EPINet [20] is a CNN used for a fast and accurate LF
depth estimation. Despite other methods, facing the challenge
of the created noise by the very small baseline between the
microlens camera images, EPINet has four separate and iden-
tical processing streams for four angular directions: horizontal,
vertical, left, and right. Later, the results from each stream are
combined to produce the final output. Before commencing the
training process, we selected 990 objects and split them into
a train-test set with an 80-20% ratio, respectively. During the
training of the model, we used two different NN models. The
first model is utilized for patch-wise training while the second
model is responsible for validating the full image.

1) Training model: The training model is designed to
incorporate the patch-wise training method (Fig. 1). In each
epoch, we load 82 out of 792 images, from which we randomly
select a batch of 8 images. Based on experimental results, we
found that using a 7x7 angular view for our model performs
better than other configurations. For the patch-wise training,
the first model receives a patch of pixels generated through
the generator, with a size of 25x25 pixels. The corresponding
label for this input patch is a 3x3 pixel patch, and both of
these patches are generated using the training generator. Ad-
ditionally, the patch undergoes data augmentation processing.
To perform stochastic gradient descent, we use a batch size of
8. By doing so, the NN can potentially learn more from each
step by paying close attention to each example separately. We
begin the training with a learning rate of le-5 which is later
reduced to le-6. We perform 100 steps for each epoch to utilize
our training augmentation technique further.

2) Validation model: The validation model is designed to
run at the end of every epoch using the weights of the training
model (Fig. 1). Our objective is to achieve a low Bad Pixel
Metric (BPM) value, so we will use the model that has the
lowest BPM value. For the second model, we use full 512x512
LF images with a padded label of 482x482 pixels as input.
We use a batch size of 1 and 7x7 angular views. We load

all of the test object images used for training into this model.
After predicting the output of the model, we calculate the BPM
between the result of the neural network and the labels.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup and Implementations

The training was carried out using an AMD® Ryzen 5
3600x 6-core processor and NVIDIA GeForce RTX 2080 Ti
PC with 24 GB of RAM.

B. Experimental Setup and training loss

As we can see in Fig. 2, the training loss of the model
is characterized by oscillations that can be attributed to two
possible factors. One could be that the learning rate is too
high. However, we can easily dismiss this idea since we do
not see any change in the fluctuations after changing the
learning rate on epoch 100. The second factor is due to
the stochastic gradient descent. It is very possible that the
model is getting stuck on local minima in every iteration.
We can confirm this because the validation BPM metric does
not change significantly after a certain point. The train loss
function is fluctuating between the values of 0.04 and 0.06.
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Fig. 2: The train loss plot for our model.

C. BPM metric

We use a metric called the BPM to evaluate our results.
The BPM measures the average number of pixels for which
the absolute difference between the ground truth and predicted
pixels exceeds a certain threshold. Our threshold for training is
set at 0.07. One of the reasons we use the BPM is to account
for small errors between the predicted and actual values that
can be safely ignored. Fig. 3 shows that the BPM metric starts
at high values, and after a point, it fluctuates until it gets stuck
in the 10-20% value range. It can be explained considering that
the model takes time to adjust its parameters to ignore the
black background. After learning to ignore the background,
we dont see any significant improvement in the BPM value
up to 500 epochs.
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Fig. 3: The 0.07 BPM metric plot for our model.



Fig. 4: (a) The center LF image, (b) the ground truth saliency map, and (c) the predictions of our NN, applied on the test

dataset and on some random 3D models found on the internet.

D. Results in the test dataset samples

The proposed method was applied both on the test data of
the GSO dataset (as described in subsection IV.B) as well as
on random 3D models found on the internet. Some indicative
results are presented in Fig. 4. The prediction values of our
trained neural network are very low, and as a result, some of
the details can be missed in the prediction image. In order to
deal with this issue, we normalize the values of the prediction
between 0 and 1. By performing the normalization process we
can see that the most important geometric features, which we
have used as labels, have been recognized, even though their
values were very low on the prediction outcome. We can also
notice that the neural network is able to detect saliency even
when multiple objects are in the scene. This can be attributed
to the patch wise training that we performed.

VI. CONCLUSION, LIMITATIONS AND FUTURE WORK

The proposed framework and study concludes that it is
indeed possible to estimate an index of geometric saliency
directly from light field images, even if this is directly not
possible due to the low resolution in the depth dimension.

One of the biggest limitations faced, was finding an optimal
way to keep track of the network’s progress. The BPM value,
which was suggested for the original EpiNET neural network,

can give a decent estimation of the performance, but the
fluctuations do not allow for straightforward optimizations.
Also, while the neural network generalizes impressively in
some areas like the keyboard in Fig. 4, it may ignore more
fine geometric differences. As far as the dataset is concerned,
uniform sample distribution over the surface is something
that has to be considered. Moreover, more sophisticated data
augmentation, before rendering the LF images in Blender,
like texturing, illumination or scaling, could further improve
performance.

Future plans involve enhancing the neural network by
exploring different options in terms of network structure depth
and hyper-parameters.
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