
Building a Turkish Text-to-Speech Engine:
Addressing Linguistic and Technical Challenges

Tuğçe Melike Koçak
NLP Technologies

Turkcell Technologies
Istanbul, Turkey

Email: tugce.kocak@turkcell.com.tr

Mehmet Büyükzincir
NLP Technologies

Turkcell Technologies
Istanbul, Turkey

Email: mehmet.buyukzincir@turkcell.com.tr

Abstract—The pursuit of end-to-end text-to-speech (TTS)
systems has resulted in generating natural sounding speech.
However, due to the requirements of high quality data and
pronouncing dictionary, certain languages may face obstacles in
achieving comparable results. In this paper, we present innovative
solutions to these challenges in the context of Turkish TTS
applications. To demonstrate the effectiveness of our approach, we
train Fastspeech2 and Tacotron models and evaluated them using
mean opinion score (MOS) measure and Speaker Encoder Cosine
Similarity (SECS). Evaluation results show that FastSpeech2
model performed well than Tacotron, also our approaches for
the dataset is improved the performance of FastSpeech2.

Index terms—text-to-speech, Turkish speech corpus, speech
synthesis

I. INTRODUCTION

The field of text-to-speech (TTS) has made significant
advancements in recent years, resulting in the creation of TTS
models that are capable of producing natural and expressive
speech synthesis [1], [2], [3], [4]. However, the latest TTS
models, such as Tacotron2 [2], and Fastspeech2 [4] require
around 25 hours of high-quality data for training. Since the
data collection for TTS is tedious, costly, and error-prone, there
is potential for improvement in this area.

To certify effective TTS training, it is a must to use a
clean dataset that is free from background noise [5]. Although
some open-source datasets are available for languages such
as English [6], Mandarin [7], and Korean [8], there are
no open-source TTS datasets currently available for Turkish.
Additionally, the Turkish language lacks a phoneme dictionary
as it is pronounced as it is written. However, certain letters such
as /a/ and /i/ exhibit changes in stress and length depending on
their position within a word. Turkish also contains heteronyms,
which are words that share the same spelling but have distant
pronunciations. For instance, the Turkish words for “of course”
and “naturally” are both spelled as “tabii”, but are pronounced
differently [9]. While a TTS model could learn from a few
samples, it may face confusion when presented with several
similar words, as demonstrated in the previous example.

Another challenge the Turkish language poses is changing
the pronunciation of future and past tense suffixes to make
it easier to speak in everyday language. For example, while
the sentence “I will come” is written as “geleceğim”, it is
spoken as “gelicem” in daily life. Speakers tend to misread
it unconsciously since this is a very common expression.

Additionally, when dubbing movies or animations, it is desired
to pronounce these suffixes as they are spoken in everyday
language. However, such misreadings cause the model to learn
and synthesize the suffixes “-ceğim”, “-cağım” as “-icem”, “-
ıcam” which is an undesired outcome.

Creating high-quality TTS datasets poses a challenge for
speakers as the recordings need to be free of any noise [10].
While reading the text, the speaker should avoid making
any sounds with their mouth, like breathing or lip-smacking.
Any such noises that are present should be removed during
editing in the studio. These sounds and other similar noises
can result in unwanted sounds during pauses. Additionally,
manually listening to the entire dataset for these noises, and
inconsistency between text and audio can be time-consuming
and labor intensive, however, is essential for the overall quality
of synthesized audio.

To address all the issues mentioned above, first, we added
additional characters for the character set and modified the
texts accordingly. Then, we employed Kaldi automatic speech
recognition (ASR) model [11] to develop a system that could
identify misspellings and mismatches between the audio and
text. Additionally, for removing unwanted breathing sounds,
we used the energy levels and durations of letters.

II. DATASET

The success of any research depends on the quality of
the data used. Therefore, it is essential to have a complete
understanding of the data collection process and the dataset
details. This section aims to provide an overview of the data
collection process and the dataset details that we have used in
our study. We will give details of the speaker, the methods used
to collect the data, topics of texts. Additionally, we will provide
information about the dataset’s technical specifications, such as
the number of sentences, words, and number of hours of audio.
By detailing the data collection process and the dataset details,
we hope to provide readers with a clear understanding of the
data used in our study.

A. Text collection

To generate our dataset, we used various articles about
topics such as politics, health, life, and sports to increase
word and phoneme coverage. In total, we collected over 45705
sentences of different lengths.

979-8-3503-3959-8/23/$31.00 ©2023 IEEE

One of Turkey’s leading voice actresses was chosen to
voice the selected sentences. The speaker is 57 years old
with 28 years of work experience. The recording started in
late 2018, and it took two years. The recordings took place
in a studio. Since the recording process took many hours
and multiple days, there is a variance in the speaker’s voice
throughout the dataset. This was one of the challenges we had
to overcome.

The speaker was instructed to narrate the sentences with
a neutral tone and pace. Additionally, she was asked to
follow Turkish grammar rules, pause on commas, ending the
sentences according to meaning. The recordings were sampled
at 48 kHz and stored using 24 bits/sample. In total, the speaker
read around 60 hours of text.

B. Audio-to-text alignment

To get more accurate alignment results for training of
FastSpeech2, first, we trained our Kaldi ASR model with 700
college students and 500 hours of data. We created a channel
in the instant messaging platform BiP [12], the speakers were
given unique keys, and they registered to the channel. Each
speaker has given a text, and they were asked to record their
voices. All speakers were informed of the data collection and
permitted to use their audio. In addition to the alignment,
we used the Kaldi ASR model to detect misspellings, to add
commas where the speaker pauses, and to identify mismatches
between text id and text. This usage of Kaldi ASR would be
explained in the next chapter.

C. Dataset specifications

The overall statistics of the dataset can be found in Table
I. In total, the dataset contains 45705 sentences and 63 hours
of audio. The distribution of sentence duration and sentence
length are shown in Fig 1. The dataset is arranged as follows.
The speaker’s audio recordings and corresponding transcript
text filenames are the same except for file extensions. Text files
are stored using UTF-8 encoding due to the nature of Turkish
characters such as “ç”, “ğ”, “ü”, “ı”, “ş”. The recordings were
downsampled to 22 kHz and stored as 16 bits/sample before
the alignment and training process.

TABLE I. TURKISH TTS DATASET SPECIFICATIONS

Category Speaker

Sentence
duration

Total 63.7 hr
Mean 5 sec
Min 1.9 sec
Max 15.8 sec

Words

Total 402,410
Mean 8.8
Min 1
Max 41

of unique words 83,660

III. MODEL ARCHITECTURE

In any research, the quality of the data processing is critical
to obtaining accurate and successful results. Therefore, this
section aims to describe the novelties in data processing that
we have employed in our dataset. These novelties include
the use of durations of letters to create a new symbol list,

Fig. 1. Sentence duration and length distributions for speaker

a verification system to automatically detect errors between
audio and transcript, and techniques that have enabled us
to handle unwanted sounds. By discussing our novelties in
data processing, we hope to provide insights into our model
architecture and demonstrate how our approaches have led to
our outcomes.

A. Additional Symbol List

The Turkish language has 29 letters alphabet and is one
of the phonetic languages, however, certain vowels including
/a/, /i/ require additional notations. To address this issue, we
examined the letters’ average, range, max, and min durations
in our dataset to provided these notations. If there was a
wide range between the length of durations, we changed
these letters with different notations in those specific words.
Furthermore, besides the duration of the letter, the stress of /a/
sound is different in some words. Such as “hikaye”, “dükkan”,
“rüzgar”. Using Turkish Language Association (TDK) website
[13], we created a word list includes these samples. We
manually modified these words in our transcript. We also
created a dictionary to make these changes when we synthesize
sentences containing these words.

B. Verification System

The effectiveness of a TTS model depends on the cor-
rectness of the dataset. That’s why manually listening and
detecting misspellings, misspoken words or inconsistencies
between text and audio is a crucial step. Since the process
is time-consuming and mundane, we trained a Kaldi model
with 500 hundred hours of audio and created a lexicon corpus
with our transcript of what the speaker ought to read. We set a
threshold of 1% for each sentence, if this threshold is exceeded,
we eliminate the sentence. After the elimination process, errors
were searches manually in selected sentences. The error rate is
1% after the dataset is passed through the verification system.

C. Noise Eliminating

Even though all the audio had been recorded in the studio,
there is some mouth noise such as breathing in our dataset.

Especially, whenever there is long sentences with multiple
commas, the speaker exhaled in mid-sentence. While that is not
a problem with synthesizing with Tacotron [1] using Griffin-
Lim [14], it is a problem for FastSpeech2 with Hifi-gan [15].

To solve the noise problem in the dataset, we first got
the energy of each frame of each sentence, then determined a
threshold for a sound whether it is a letter or random noise
looking through the dataset. After setting the threshold, we
got the duration of each pause in the sentences. Replaced the
pauses with silences with 50 ms margin at the start and end
of the pauses. In total, we modified 66% of the all audio.

IV. EXPERIMENTS AND RESULTS

In this section, we will describe the models, experiments,
and results that we have utilized with our dataset. We will
provide details about the models we have used, including their
configurations, used vocoders. Additionally, we will explain
the experiments we have conducted to test these models and
the results we have obtained from these experiments.

A. TTS experiments

1) Experimental Setup: We conducted 3 different experi-
ments. We want to see the performance differences between
Tacotron and FastSpeech2 models with our dataset. Also, we
want to see how well our approaches perform. We removed one
word sentences from our dataset. We trained both FastSpeech2
and Tacotron with around 60 hours of data. We randomly split
our data into 2 sections, training and testing. We downsampled
the audio frame rate to 22050 kHz.

We trained both FastSpeech2 models with a new letter
set to improve the pronunciation. To improve the quality
of synthesized audio, we use noise eliminating technique
mentioned above. Also, we used a verification system to verify
the dataset for both FastSpeech2 models. However, to see the
effectiveness of noise elimination, we only apply it to the
dataset that we trained the FastSpeech2-Preprocessed model.
For both Fastspeech 2 models, alignment is done with our
Turkish Kaldi model.

2) TTS Model Configurations: Our Fastspeech 2 models
consist of 8 feed-forward Transformer (FFT) blocks in the
encoder and decoder. For each FFT block, the hidden size
of the self-attention is set to 512. The number of attention
heads is set to 8 and the kernel sizes of the 1D convolution in
the 2-layer convolutional network after the self-attention layer
are set to 9 and 1, with input and output sizes 512/1024 and
1024/512 respectively for the first and second layer. For the
variance predictor, the kernel sizes of the 1D convolution are
set to 3, with input and output sizes 512 for both layers, and
the dropout rate is set to 0.5. The model training were done on
seven NVIDIA V100 GPUs with batch size of 64. We trained
FastSpeech models for 300k steps. Both FastSpeech models
used Hifi-gan as a vocoder.

Tacotron is an RNN-based model that uses the CBHG (1-D
convolution, bank highway network, and bidirectional GRU)
module. Our Tacotron model consists of a fully-connected
(FC)-512-ReLU/FC-256-ReLU encoder and decoder pre-net.
The dropout rate is set to 0.5. Tacotron training was done
on NVIDIA v100 GPU with batch size of 128. Griffin-Lim
vocoder was used for Tacotron.

3) Vocoder Model Configurations: The TTS models gen-
erate a mel-spectrogram of desired audio. A trained vocoder
synthesizes speech with generated mel-spectrogram [4]. As
a vocoder we used Hifi-gan. For training the Hifi-gan, the
sampling rate is set to 22.050 kHz with FFT size of 1024. The
frame size and hop size are set to 1024 and 256 respectively.
The model trained for 500k steps. Figure 2 shows generated
sample compared to the ground truth with 500k steps. The
training was on one NVIDIA V100 GPU with batch size of
16. The training took 86 hours.

Fig. 2. A graph of sample audio generated at 500k steps with Hifi-gan
compared to ground truth.

B. Experiment Results

We randomly selected 25 text sentences with various
lengths from the test set. We generated these 25 text samples
using 3 models to be evaluated. In total 450 audio samples
by generated and evaluated by 50 individuals. Each audio
was rated by 6 different listeners. Each listener independently
scored each sample based on a 5-point Likert scale score.
A test channel was opened on BiP so that each user could
evaluate under the same conditions and test without knowing
what they scored. User IDs were defined on the test system,
allowing everyone to score 12 different audios.

TABLE II. MOS AND SECS WITH 95% CONFIDENCE INTERVALS FOR
ALL OUTPUTS.

Model MOS SECS

Ground truth 4.53 ± 0.12 0.88

Tacotron 3.72 ± 0.16 0.86

FastSpeech2 4.1 ± 0.16 0.83

FastSpeech2-Preprocessed 4.39 ± 0.13 0.85

The evaluation results are given in Table II. According
to the MOS results, all three models passed the 3.5 score
which is a good quality in terms of industry standards. The
ground truth expectedly achieved the highest performance,
however FastSpeech2 with pre-processed data closely followed
the ground truth, then FastSpeech2 and Tacotron model. As
we expected preprocessed data performed best, that’s because

Fig. 3. An example of interaction with the BiP channel during an evaluation
session.

breathing sounds in the dataset cause the mechanical sounds
in the pauses of synthesized audio. As we can see in the
Table III, noise is the highest in FastSpeech2 model. Although
we did not eliminate the breathing sounds in the dataset for
Tacotron, synthesized audio for Tacotron is a more natural-
sounding breathing sound. However overall audio quality does
not compute with FastSpeech2 models.

To analyze the similarity between ground truth and syn-
thesized voices, we calculated the Speaker Encoder Cosine
Similarity (SECS) [16] between reference audio from the
speaker and synthesized voices. The score range between -
1 to 1, the highest score indicates higher similarity. As it can
be seen in Table II all model scores are similar to each other.
However, Tacotron is slightly higher than others.

TABLE III. MANUAL ANALYSIS OF MOST COMMON ERRORS.

Error types Tacotron FastSpeech2
FastSpeech2-
Preprocessed

Misprounounced

words
1 1 1

Noise 1 7 2

Incomplete

sentences
3 0 0

Long pauses 0 0 0

Skipped words 0 0 0

V. CONCLUSION

In this paper, we introduced problems commonly faced in
training and synthesizing TTS. Especially, languages without
proper phoneme dictionaries such as Turkish what to look for
when creating a dataset, and how to remove silences, and cre-
ating a new symbol list. According to the experimental results,
our proposed solutions helped successfully generated speech.
Our proposed solutions, based on our own dataset, have shown
efficient results in generated speech. These solutions can be
modified and implemented in other languages and datasets as
well. In the future, we plan to explore the possibilities of multi-
speaker TTS and emotional TTS for Turkish.

REFERENCES

[1] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-
to-end speech synthesis,” arXiv preprint arXiv:1703.10135, 2017.

[2] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions,” in 2018 IEEE
international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2018, pp. 4779–4783.

[3] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech: Fast, robust and controllable text to speech,” Advances in
neural information processing systems, vol. 32, 2019.

[4] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech 2: Fast and high-quality end-to-end text to speech,” arXiv
preprint arXiv:2006.04558, 2020.

[5] Q. Hu, E. Marchi, D. Winarsky, Y. Stylianou, D. Naik, and S. Kajarekar,
“Neural text-to-speech adaptation from low quality public recordings,”
in Speech Synthesis Workshop, vol. 10, 2019.

[6] K. Ito and L. Johnson, “The lj speech dataset. 2017,” URL
https://keithito. com/LJ-Speech-Dataset, 2017.

[7] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and
Y. Wu, “Libritts: A corpus derived from librispeech for text-to-speech,”
arXiv preprint arXiv:1904.02882, 2019.

[8] K. Park, “Kss dataset: Korean single speaker speech dataset,” 2018.
[9] A. Göksel and C. Kerslake, Turkish: A comprehensive grammar. Rout-

ledge, 2004.
[10] R. Zandie, M. H. Mahoor, J. Madsen, and E. S. Emamian, “Ryanspeech:

A corpus for conversational text-to-speech synthesis,” arXiv preprint
arXiv:2106.08468, 2021.

[11] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, and P. Schwarz, “The kaldi
speech recognition toolkit. ieee 2011 workshop on automatic speech
recognition and understanding. ieee signal processing society,” 2011.

[12] B. BiP İletişim Teknolojileri ve Dijital Servisler A.Ş, https://bip.com/tr/,
[Online].

[13] T. Turkish Language Association, https://sozluk.gov.tr, [Online].
[14] D. Griffin and J. Lim, “Signal estimation from modified short-time

fourier transform,” IEEE Transactions on acoustics, speech, and signal
processing, vol. 32, no. 2, pp. 236–243, 1984.

[15] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis,” Advances in Neural
Information Processing Systems, vol. 33, pp. 17 022–17 033, 2020.

[16] E. Casanova, C. Shulby, E. Gölge, N. M. Müller, F. S. de Oliveira, A. C.
Junior, A. d. S. Soares, S. M. Aluisio, and M. A. Ponti, “Sc-glowtts: an
efficient zero-shot multi-speaker text-to-speech model,” arXiv preprint
arXiv:2104.05557, 2021.

