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Abstract—In many forensic examinations and media authen-
ticity verifications, it is essential to reconstruct the place where
a photo was taken without having information such as GPS
coordinates and other metadata available. In recent years, satellite
imagery has been used in some of these reconstructions to map the
image captured from the ground with the photos from above. This
task, known as ground-to-aerial mapping, allows a very effective
localization but remains a complex and time-consuming task.
Deep learning-based methods allow for accurate automatic image
matching; however, many of these solutions can be challenging
to explain and, therefore, barely applicable in scenarios where it
is necessary to justify the analysis. Consequently, in this paper,
we propose a fully automated, explicable solution that is able to
perform image-matching tasks based on a graph-based solution.
Our proposed pipeline is composed of four stages in which we
extract a graph representation of the images that we use for
matching. Moreover, the designed pipeline improves previous
related methods of 17.84% for the mean IOU top-1 and of 32.71%
for the top-3.

I. INTRODUCTION

Satellite images have become an essential investigative tool
in many journalistic analyses. Whether verifying the authentic-
ity of facts, reporting on conflict zones, or reconstructing the
location of a specific event due to partial video evidence leaked
online, satellite imagery is widely adopted in newsrooms. The
BBC was one of the first to use satellite images to report
on the internment camp system used to imprison Muslim
minorities in China’s Xinjiang region in 2017 [1]. As soon
as the first evidence of these events became public, the regime
immediately censored all relevant documents like social media
posts. The story would have been quickly suppressed if it
were not for satellite imagery. Since then, many other analyses
have made it possible to reconstruct where several events
like brutal murders took place [2] thanks to the cross-view
matching between ground evidence and aerial images. Similar
considerations could be made on the current war in Ukraine,
where several crimes and political stories have been spread.

In this paper, we examine the problem of automatic ground-
to-aerial viewpoint localization from a forensic perspective.
Although it is a very active area of research, many state-
of-the-art techniques involve end-to-end deep learning-based
methodologies that lack explainability. The lack of these
characteristics represents a problem for media verification and
authentication, as the matches obtained must be supported by
clear and justifiable evidence [3]. Given these requirements,
in this paper, we propose to address the problem based on
graph matching as shown in Figure 1. First, the analyzed
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Fig. 1. An example application of our method. Figures 1-(a) and (b) depict
the aerial and ground-level images, respectively. Our proposed method extracts
a graph representation of the two images and matches the graphs to localize
the ground view over the aerial one. In (c), we show our predicted location
(in red) and the corresponding ground truth (in green).

images are segmented to identify the objects of interest present
within them. Subsequently, each entity becomes a node in a
graph connected to the others based on a covisibility window.
This approach offers a complete automation of the matching
process without sacrificing the interpretation of the results, thus
offering an advantage over deep learning-based models, which,
although they have proven to be very accurate, are challenging
to unfold and, therefore, hardly usable in investigations [4].

Generally speaking, the matching between images taken
from an overhead point of view and the ground level is a
fundamental task in computer vision applications due to the
high amount of available information that can be extracted.
Before tackling the ground-to-aerial problem, researchers fo-
cused their attention on ground-to-ground image matching.
Hays et al. [5] proposed the first data-driven method that sorted
out the problem of geo-localization from ground-level images.
However, this solution relied more on scene categorization
rather than localization retrieval. Another typical technique to
comprehend relationships among images for data collection
and geolocalization is based on 3D reconstruction [6]–[8] and
geometric constraints, both in urban and natural environments.
Baatz et al. [9] focused on mountainous areas to pull out the
recognition of the skyline given a digital elevation model of
a country. Following this concept, Lin et al. [10] proposed
the first approach using ground and aerial images to retrieve



geolocalization via a data-driven approach. Satellite images
are now much more widespread and cover every region of
the planet, offering a conspicuous advantage over terrestrial
photos, which can be more challenging to collect. This offers
a substantial advantage in forensic applications.

Recently, with the advent of deep learning, AI-based al-
gorithms have been exploited to improve the matching perfor-
mances of previous methods. Three are the main architectural
structures employed to handle the task: (i) the siamese-like
networks, (ii) the generative adversarial networks (GANs) and
(iii) transformer networks. The goal of siamese-like architec-
tures is to extract shared features between the ground point
of view and the overhead one. Subsequently, the distance
between extracted features is computed in order to understand
if there is a relationship between the two or if there are
some features that are immune to the significant shift in
the point of view. Lin et al. [11] are the first to introduce
the Where-CNN, a siamese network that achieves superior
results when compared to traditional hand-crafted features.
Subsequently, Vo and Hays [12] and Shi et al. [13] focused
on recovering orientation besides location using a soft-margin
triplet loss on top of a Siamese CNN network and a siamese-
like network relying on polar coordinate mapping, respectively.
Whereas, Hu et al. [14] insert the NetVLAD [15] layer in
addition to a Siamese network to identify features that are
consistent with large changes in perspective. Shi et al. [16]
aims at transforming the features from the ground domain
to the aerial one utilizing a novel feature transport module
together with a Siamese network. Other methods exploit GANs
to synthesize images related to the two viewpoints and use
them as additional information useful for obtaining a better
understanding of the scene. Deng et al. [17] propose a GAN-
based methodology in which the generator produces a ground-
level image from the aerial point of view that is then compared
with the real ground query image to retrieve the matching. On
the other hand, Regmi et al. [18] aim at generating an aerial
viewpoint of a ground-level panorama query image in a way
that the transformed image has scene representations similar
to the images it is matched against. It is also worth mentioning
more recent deep learning-based approaches that rely on vision
transformers (ViT). For example, Tian et al. [19] suggest a
conditional GAN combined with a Transformer to synthesize
an aerial image that appears with the same style as the ground
view. Whereas, Zhang et al. [20] work towards the use of
limited field-of-view images captured from more common
devices such as smartphones and digital cameras instead of
panoramic ground images, grasping sequential spatiotemporal
features via the implementation of a VGG16 and temporal
feature aggregation module inspired by the ViT architecture.
Even if these deep learning-based solutions achieve excellent
performance, they are still difficult to explain and, therefore,
difficult to apply in a forensic scenario in which it is nec-
essary to justify the output of the analysis. Moreover, state-
of-the-art deep learning methods are designed in a supervised
setting, while here, we propose an unsupervised approach that
leverages the view-independent adjacency properties of visible
landmarks to create comparable graph structures.

Differently from the previous methods that require high
computational costs for explicit feature extraction, we model
this problem via a probabilistic framework that matches graph
representations of the image obtained from connecting the

salient objects of the image.

II. METHODOLOGY

In this section, we present our pipeline for ground-to-aerial
viewpoint localization. Our pipeline, shown in Figure 2, auto-
mates the entire task without sacrificing model explicability,
making the solution applicable in forensic investigations. We
achieve this goal by building upon the previous landmarks
graph matching technique introduced in Verde et al. [21].
Differently from this paper, which required an extensive human
labeling process, our proposed methodology automatically
extracts the graph representation of the image. This graph
representation has the advantage of being able to take into ac-
count image features that are not dependent on the viewpoint,
therefore preserving the adjacency relationships among objects
no matter the angle or point of view from where the image is
taken. From here on, we introduce the stages of our pipeline,
which is composed of four stages: Stage-A segments the image
extracting the objects of interest in the satellite and panoramic
images, Stage-B identifies the nodes that will compose the
graph, Stage-C is used to generate the graph connecting all
the nodes, and Stage-D computes the matches between the
two-view images.

Stage-A: Semantic Segmentation. Our pipeline takes as input
a panoramic ground viewpoint image and a wide aerial per-
spective from a satellite photograph. These images are initially
processed with common AI-based semantic segmentation [23]
techniques in order to extract a labeled image where each pixel
corresponds to a given class. We select this approach with the
aim of building a pipeline that is automated without the need to
extract the significant landmarks a priori. To demonstrate the
effectiveness of the proposed pipeline, we segment the image
with respect to generic entities that can appear in any viewpoint
image, such as buildings, pavements, roads, and trees. Figure 2
reports an example of the output of the semantic segmentation
task, both for the satellite and the panoramic ground image.
We report each label in the image with a different color, that is,
(1) buildings are colored in blue, (2) pavements are depicted
in light blue, (3) roads are yellow, and (4) trees are pictured
in green. All the irrelevant elements are blacked out in the
segmented image.

Stage-B: Node Generator. Once the objects in the images
have been labeled, we want to convert the segmented image
into a graph. In this stage, we represent each object in the
image as a separate labeled node. To do so, the segmented
image obtained from the previous step is filtered to handle
one class at a time. Then, we convert the segmented objects
into a binary mask where white pixels represent the relevant
class, and black pixels depict the background, as illustrated
in Figure 3. The binary images are finally analyzed by the
Spaghetti labeling algorithm introduced in Bolelli et al. [24]
using 4-way connectivity. An example of this process is shown
in Figures 3(a)-(d). Each color represents a group of pixels
belonging to the same connected component, i.e., different
objects within a class are depicted in different colors. The
same framework is applied to both aerial and ground images.
The last step of this phase is the extraction of the centroid of
each of the connected components. This point will represent
the coordinates of the node.
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Fig. 2. Overview of our proposed pipeline based on semantic graph for ground-to-aerial image matching. Stage-A depicts the semantic segmentation operation
applied to the images taken from CVUSA dataset [22], both to a panoramic image and the corresponding aerial view. Stage-B represents the connected
components algorithm and the corresponding nodes generator. Stage-C shows the graph generator for both panoramic and overhead images. Finally, Stage-D
represents the final matching retrieval between the two points of view.

(a) Building (b) Pavement

(c) Road (d) Tree

Fig. 3. Example of connected component labeling algorithm applied to
the binary mask (left side) of each label of a satellite image, i.e., building
(a), pavement (b), road (c), and tree (d). On the right side of each label
is illustrated the output of the connected component labeling algorithm: each
color represents a connected component, i.e., different instances within a class
are depicted in different colors.

Stage-C: Graph Generator. Now that nodes have been cre-
ated, this stage connects them based on a covisibility window
using the strategy proposed by Verde et al. [21]. The landmark
graph is obtained by sliding a window through the image with
a stride of one pixel. If two or more nodes are detected within
the covisibility window, they are connected and stored as a
clique. The covisibility window size is variable and adjusted
based on the distance of the nodes with the aim of obtaining
a connected graph, both for the aerial and the ground image.
The output of this stage will be a labeled graph that represents
all the spatial connections between the objects in the image.

Stage-D: Graph Matching. At this stage, we can finally
compare the satellite image with the ground image by matching
their graphs. Once the pictures are matched, the result gives an
estimate of the location of the query ground panoramic image
in the aerial view. The matching of the graphs is conducted
by considering just cliques of the previous Stage-C that are
considered relevant [21]; that is, the same clique in the aerial
view must at least once occur on the query image. Given
the drastic viewpoint change and possible element occlusions
in the query image, traditional keypoint matching techniques
would not work in this scenario, as some nodes visible in the

satellite image may not be present in the ground image. Con-
sequently, we cast the problem to a probabilistic framework by
obtaining a collection of candidate locations Lx that represent
different subgraphs of the satellite image and corresponding
possible matches in the ground image Z . Following Stumm et
al. [25], we assume that the sparse normalized cross-correlation
between location adjacency matrices represents the observation
likelihood P (Z|L) of the ground query Z given a location
L in the satellite image. Denoting the class adjacency matrix
between classes i and j in Z and L by WZ

ij and WL
ij , the

likelihood is computed as shown in Equation 1.

P (Z|L) =
∑

ij W
Z
ij ·WL

ij√∑
ij (W

Z
ij )

2 ·
∑

ij (W
L
ij )

2
(1)

At this point, we can apply Bayes’ rule to derive the posterior
probability of being in a location given the observation as
follows in Equation 2.

P (Lx|Z) =
P (Z|Lx)P (Lx)

P (Z|Lx)P (Lx) + P (Z|Lx)P (Lx)
(2)

In conclusion, the candidate location that satisfies the maxi-
mum a posteriori (MAP) criterion in Equation 3 is the best
possible matching for the present ground query.

LMAP = argmaxLx
P (Lx|Z) (3)

The output of the prediction of the matching pipeline is
the covisibility window corresponding to the best candidate
location LMAP (i.e., the green square in Stage-D of Figure 2)
to be compared to the ground truth (i.e., the red square in
Stage-D of Figure 2). As said, the dimension of the covisibility
window is variable, and as a consequence the dimension of
the bounding box of the prediction will vary accordingly. This
aspect will be deepened in Section III.

III. RESULTS

In this section, we report our experiments and implementa-
tion details. All the pipeline has been implemented in Python.
In particular, we use the OpenCV1 and NetworkX [26] libraries
for extracting the connected components and generating the

1https://opencv.org/



nodes corresponding to each object as described in Section II.
We evaluate our pipeline on the CVUSA [22] dataset, which
contains more than 44k image pairs taken from the aerial
viewpoint at a resolution of 750× 750 and from ground level
at a resolution of 1232 × 224. The dataset is assembled by
downloading images depicting locations in the United States
from Google Street View and Flickr. In all our experiments,
we evaluate viewpoint localization in terms of Intersection
Over Union (IOU), which measures the alignment between
the ground truth and predicted bounding boxes.

As mentioned in Section II, we use a variable size covisi-
bility window as in Verde et al. [21]; we evaluate our method
with two other window sizes: 128× 128, and 256× 256. The
ground truth bounding boxes are always placed at the center of
the satellite image because of how the dataset was assembled.

Experiment 1. The first experiment investigates the trade-off
between the variable window and a fixed strategy. We report,
in Table I, the top-1 and top-3 mean IOU with respect to the
estimated windows. As can be seen from the reported values,
the proposed solution introduces a 96.56% gain in terms of
mean top-1 IOU when compared to the 256×256 fixed window
and 390.37% when compared to the 128×128 one. Moreover,
on the same settings, we achieve a top-3 accuracy improvement
of 105.33% with respect to the fixed window 256 × 256 and
483.17% for the 128× 128 window. Based on those findings,
we assume that the use of a variable size window allows the
pipeline to better generalize over different scenarios and obtain
more accurate matching.

TABLE I. PERFORMANCES OBTAINED WITH THE PROPOSED METHOD
VARYING THE WINDOWS DIMENSION.

Ground truth size IOU top-1 IOU top-3
128x128 0.0948 0.0766
256x256 0.2366 0.2175
variable window 0.4650 0.4467

Experiment 2. In the second experiment, we compare our
proposed automated pipeline with respect to the interpretable
method introduced by Verte et al. over the same test set
considered in their paper, which is composed of 15 images
extracted from the CVUSA dataset. We report in Table II
the obtained results over different methodologies and window
sizes. Based on the reported values, the proposed pipeline
achieves an improvement on the top-1 and top-3 accuracy
equal to 17.84% and 32.71%, respectively, with the variable
window configuration. We can also notice that the proposed
method obtains slightly worse results with respect to Verde
et al. in the case of fixed windows. However, our method is
fully automated, and probably extracts better graph represen-
tations that lead to the best matching accuracy than the other
method when it is considered a variable configuration for the
covisibility window.

TABLE II. QUANTITATIVE EVALUATION OF THE PROPOSED
AUTOMATED PIPELINE WITH RESPECT TO VERDE ET AL. THE BEST

RESULTS ARE IN BOLD.

Ground truth size Verde et al. [21] Proposed method
IOU top-1 IOU top-3 IOU top-1 IOU top-3

128x128 0.2215 0.1058 0.1503 0.0527
256x256 0.2789 0.2057 0.2535 0.1147
variable window 0.2724 0.2305 0.3210 0.3059

Experiment 3. Our final experiment analyzes the robustness
of the proposed pipeline with respect to every single object
class for estimating their importance when constructing and
matching the graphs. We report a graphical comparison in
Figure 4, where the blue line shows the accuracy trend of our
method while the dotted one reports the performances of Verde
et al. [21] while evaluating the 15 image subset from CVUSA
with the variable window setting. Figure 4 also reports the
standard deviation of our method (in purple) compared to the
one from Verde et al. (in red). Based on the reported values and
previous findings, we can notice that our method outperforms
the baseline when all four classes are present. Moreover, this
experiment measures the impact of removing one single class
at a time. From the figure, we can observe that removing
the pavement or tree classes can lead to a performance gain
with respect to operating on all four classes. Therefore, when
using a set of three classes, our proposed pipeline achieves an
average IOU improvement equal to 22.15% with respect to the
method from Verde et al.

Fig. 4. Change in IOU in terms of mean and standard deviation when
considering a subset of only three classes. As you can see, removing floors
and trees improves performance.

IV. CONCLUSION

In this paper, we introduced a fully automated pipeline for
the ground to the aerial viewpoint localization. The proposed
method allows for easy interpretation with respect to fully deep
learning-based methodologies, making our strategy suitable for
forensic investigations and media authenticity verification. Our
method is fully automated compared to the work of Verde et
al. [21], and to obtain an average IOU improvement of 25.3%.
In future works, we plan to employ and study the explainability
of graph neural networks to solve this task with a trainable but
interpretable method. Finally, we plan to extend our study to
different datasets.
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