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Abstract—Affective computing is gaining increased interest by
the scientific community in the last decades with the acoustic
modality playing a central role. This paper presents an extensive
computational analysis of emotional speech focusing on the
Italian language. More precisely, we propose a novel classification
algorithm based on a suitable data augmentation scheme. The
aim is to classify the seven emotions (anger, disgust, fear, joy,
neutral, sadness, and surprise) included in the only publicly
available database of Italian emotional speech, i.e. EMOVO. To
this end, we employed two feature sets, Mel Frequency Cepstral
Coefficients and log-Mel spectrogram, each one combined with
a suitable classifier, i.e. Mutilayer perceptron and Convolutional
neural network respectively. The implementation and evaluation
of the proposed SER pipeline can be accessed through the
following link: https://github.com/irenemante/ser emovo

Index Terms—Affective computing, Convolutional neural net-
work, Multilayer perceptron, data augmentation, MFCCs, log-
Mel spectrogram.

I. INTRODUCTION

Speech comprises one of the most natural ways to express
ourselves [1]. As such, researchers have extensively considered
speech as a fast and efficient method in human computer
interaction. Indeed, during the last decades, there has been a
considerable amount of research on speech processing concen-
trated on paralinguistic aspects [2]. Despite the great progress
made in speech recognition, we are still far from having natural
interactions between humans and machine due to the poor
automated understanding of the speaker’s emotional state. The
field of Speech Emotion Recognition (SER), which is defined
as the process of extracting the emotional state of a speaker
from her/his speech. SER can be applied to a wide range
of applications such as computer tutorials applications, car
assistants, where it can be adopted to recognize the mental
status of the driver, automatic translation systems, dialogue
systems for spoken languages such as call center conversations
and medical applications, in which is employed as a diagnostic
tool for therapists [3]. SER is a particularly challenging
task for different reasons: 1) diversity in sentences, speakers,
languages, speaking style and rate in the datasets complicates
the identification of suitable feature sets 2) the expression of
emotions depends on the cultural background of the speaker
and this is why it is preferred to use datasets in which speech
is recorded by people with the same cultural background.

An important prerequisite of SER is to establish the set of
emotions to be classified. Existing research has determined
the following list of distinct emotions: Anger, Disgust, Fear,

Joy, Sadness, and Surprise [4]. They are called Archetypal
emotions and the vast majority of SER datasets are based
on them [5]. Indeed, a large amount of datasets has been
created to serve emotion classification tasks covering covers
the most common languages in the world, as English, Chinese,
Arabic, Japanese, Spanish, Portuguese, French, Italian, Greek,
Russian, etc. 1 [6].

This article focuses on the Italian language which has
received limited attention by the scientific community. To this
end, we selected the database EMOVO which includes speech
coming from 3 actors and 3 actresses speaking 14 sentences
simulating the 6 Archetypal emotions plus the neutral state [7].
The implemented audio pattern recognition pipeline includes
feature extraction and pattern recognition components, while
we experimented with both traditional and deep learning
approaches. First, log-Mel spectrograms are extracted from
the audio files of EMOVO and fed to a Convolutional neural
network. The second approach uses Mel Frequency Cepstral
Coefficients (MFCCS) along with their deltas as inputs for
a Multilayer Perceptron. At the same time, we experimented
we two data augmentation schemes, namely pitch shifting and
noise addition, which were able to improve the generalization
capabilities of the deep model. Importantly, to the best of our
knowledge, this constitutes the best performance reported in
the literature regarding Italian SER.

The rest of this work is organized as follows: section II ex-
plains the feature extraction and pattern classification modules,
while III presents the dataset and the adopted experimental
protocol. Section IV analyzes the obtained experimental results
and we draw our conclusions in section V.

II. THE EXPLORED METHODS

Fig. 1 illustrates the pipeline of the proposed architecture.
We start from data pre-processing, which includes DC-offset
removal. Subsequently, we introduce a data augmentation
block as the size of the available dataset is relatively limited.
To this end we increase the dataset by injecting diverse mod-
ifications in the original data. The considered modifications
include pitch shifting and addition of white noise. As such,
the model may learn from multiple variants of the available
emotional speech which may improve its generalization capa-
bilities [8].

In the next step, the MFCCs along with their deltas and
log-Mel spectrograms are extracted from the original and
augmented signals. Zero-padding was employed to uniform

1https://superkogito.github.io/SER-datasets/979-8-3503-3959-8/23/$31.00 ©2023 IEEE



Fig. 1: The proposed pipeline starting from data pre-processing, augmentation, feature extraction and ending with the considered
classification models.

the durations where necessary. After z-score normalization,
the last phase consists in the creation of the machine learning
models to carry out SER.

A. Feature extraction

This subsection describes the feature sets employed to
characterize the available manifestations of emotional speech.

1) Mel-frequency Cepstral Coefficients: Mel-frequency
cepstral coefficients (MFCCs) are a feature widely used in
automatic speech and speaker recognition. For their derivation,
the signal is split into overlapping frames from where the
power of the Short Time Fourier Transform is computed.
The obtained representation is filtered through a Mel scale
filterbank to highlight the signal bands that are important for
human perception. The last stages include log-scaling and
decorrelation through the Discrete Cosine Transform (DCT)
[9]. Finally the most significant 13 coefficients along with their
deltas are kept.

As regards to the parameterization, sampling rate of the
signals is 22.050 Hz, the number of coefficients to extract
13, the length of the FFT window 2048 and the hop length
512. The result is a multi-dimensional array composed of 26
elements (13 MFCCs coefficients and 13 deltas coefficients)
whose length is 130, which corresponds to the resulting
number of frames.

2) Log-Mel spectrogram: To compute the log-Mel spectro-
gram we used the same procedure described above for the
MFCCs, with the only difference being the omission of the
Discrete Cosine Transform. Compared to MFCCs, it does not
destroy spatial relations and as such, it is more suitable to
spatially local models, like CNN. The resulting feature set is a
multi-dimensional array composed of 60 elements with dimen-
sion of 130, similarly to the MFCCs. Fig. 2 illustrates log-mel
spectrograms representing all available emotional states.

B. Data augmentation

Data augmentation is a process of artificially increasing the
amount of data by generating new data points from existing
data. Typically, this introduces minor alterations to the data or
employs machine learning models to generate new data points
in the original space [10], [11]. In this work, the proposed

data augmentation techniques are white noise addition and the
pitch shifting. The first one injectes white noise fo the signal in
improve the robustness and generalization, while during latter
one, the pitch of the audio sample is raised or lowered, keeping
the duration unchanged. Motivated by the encouraging results
in different audio pattern recognition tasks [12] it was carried
out in two diverse ways, i.e. using both a positive value (2)
and a negative value (-2) regulating the pitch alteration. The
positive value raises the pitch, while the negative one lowers
it.

C. Classification Models

This section explains briefly the models considered in this
work including both shallow and deep neural networks.

1) Multilayer Perceptron (MLP): It is an artificial neural
network (ANN) encompassing multiple perceptrons. In this
work, MLP used as inputs the MFCCs and the respective
deltas. The proposed architecture for the MLP consists of
one initial flatten layer reducing the three-dimensionality of
the dataset followed by three dense layers with a decreasing
number of neurons. Each dense layer is followed by a dropout
one which sets input units to 0 with the frequency of 0.3 at
each step of the training time in order to avoid overfitting.
During early experimentations, it was evident that the presence
of dropout layers did not limit significantly the overfitting phe-
nomenon, early stopping was employed stopping the training
process when the loss continues to increase for 10 subsequent
epochs. At the same time, we applied L2 regularization to the
weights of the dense layers with a coefficient equal to 0.001,
thus adding penalties on layer parameters.

We used Rectified Linear Unit as activation function in
order to take into account the non-linearity of the output of
each layer, while the last dense layer employed the Softmax
function, which produces probabilities with respect to all
classes.

2) Convolutional neural network (CNN): This deep neural
network is a stack of multi-layer neural networks including a
group of convolutional layers, pooling layers and, typically, a
limited number of fully connected layers. Since CNNs have
shown exceptional abilities in various image processing tasks
[13] log-Mel spectrogram representation was chosen as input



Fig. 2: Log-Mel spectrograms extracted from samples belonging to all classes available in the EMOVO dataset.

(a) before augmentation

(b) after augmentation

Fig. 3: Feature space visualization before (top) and after
(bottom) the data augmentation process.

of this model type [14]. The considered CNN architecture is
composed of four 2-D convolutional layers, each of which is
followed by a maxPooling layer, responsible for the reduction
of the convolutional features maps dimension, and a dropout
layer. The convolutional layers have a kernel size of 2x6
and an increasing number of filters, while the kernel size
for maxPooling layers is 2x7. The resulting features maps
are then flattened, through global average pooling layer, into
a one-dimensional array, which comprises the input of a
Fully connected neural network driving the final classification
decision. The Fully connected neural network consists of two
dense layers, followed by a dropout layer. As in Multilayer

perceptron, the dropout layer, the regularizer and the early
stopping (considering 10, 15 or 20 epochs) were employed in
order to avoid overfitting.

III. EXPERIMENTAL SET-UP

This section presents the employed dataset including feature
space visualization along with the experimental protocol.

A. Dataset and pre-processing

EMOVO dataset is composed of 588 audio files, the duration
of which varies from 2 to 11 seconds. Each file contains a
sentence manifested by an actor expressing a specific emotion.
This dataset is characterized by a strong class balance because
the considered emotions (fear, sadness, joy, neutral, anger,
disgust, surprise) are represented with the same number of
audio files. As mentioned in the feature extraction section,
a multi-dimensional array is created and, for model learning
and evaluation, it is important that the sequences representing
an audio file have equal dimensionality. To this end, in order
to ensure the same length of the arrays, it was necessary to
reduce to 3 seconds the duration of the audio files that are
longer than 3 seconds and to apply the zero-padding to the
extracted features of the files that are shorter than 3 seconds.
During the post-processing stage, the extracted features are
standardized such that their distribution has a mean value of
0 and standard deviation of 1 [15].

B. Feature space visualization

In order to explore the feature space with the true distri-
bution before and after the augmentation, we extracted from
each audio file an audio embedding using OpenL3 [16], an
open-source deep model based on the self-supervised L3-Net
[17]. Among other tasks, OpenL3 has been employed for
SER. The embedding, generated through OpenL3, is a multidi-
mensional array whose dimensionality is directly proportional
to the duration of the audio files. To guarantee the same
dimensionality for all the embeddings, we applied the zero
padding on the time series of the files shorter than 3 seconds
and we reduced the length of longer files to 3 seconds. For
the data visualization, t-SNE was adopted in order to reduce
the embedding dimensionality to 2 features. Fig. 3 illustrates
the feature space before and after data augmentation, where
we can observe that the specific problem is highly non-linear
with a substantial overlap between the available classes.



Table I: Recognition rates (in %) averaged across the consid-
ered emotional classes with respect to the proposed pipeline
(ps: pitch shifting, na: noise addition). The highest rate is
emboldened.

Dataset CNN MLP

Without augmentation 43.2±0.9 39.6±1.8

Augmented with ps 91.1±1.1 73.5±0.1.6

Augmented with ps&na 96.5±0.6 74.9±1.5

C. Experimental Protocol

For the evaluation of the proposed models, we adopted the
stratified 10-fold cross-validation protocol. Stratified k-fold
cross-validation is an extension of the k-fold cross-validation
having the advantage of preserving the percentage of samples
for each class [18]. Each experimental setting (both classifiers
combined with both augmentation schemes) was iterated 10
times and we report average and standard deviation values.

IV. EXPERIMENTAL RESULTS

Different experiments were realized to compare the per-
formances of the two models and to evaluate how the data
augmentation affects the models’ performance. The two mod-
els were tested on the following cases: a) original data,
b) original data augmented with pitch scaling, and c) original
data augmented with pitch scaling and white noise addition.
As a figure of merits, we employed average recognition rate
and confusion matrix. Table I includes the rates averaged
across the considered emotional classes with respect to the
proposed pipeline and augmentation schemes. Figures 5 and
4 demonstrate the confusions matrices for the best performing
MLP and CNN models respectively.

In general, the CNN outperforms MLP in every conducted
experiment; in fact, if we consider the data augmented through
the two techniques, the level of accuracy of CNN reaches the
96.5%, while MLP reaches 74.9%. In addition, it emerged
that the obtained outcomes without data augmentation are
not satisfactory. The accuracy stops at 43.2% with CNN and
39.6% with MLP while in both the cases there is strong
evidence of overfitting (when examining how the train and
test accuracy and loss change over time during model learning)
and considerable standard deviation values. This may be due
to the limited size of EMOVO which might be insufficient to
represent all seven emotional states during training.

On the contrary, when we consider the data augmented
through the two pitch scaling techniques, the results are satis-
fying. It occurs because of the higher availability of training
data across all considered classes. The subsequent application
of white noise addition tends to eliminate overfitting in both
models thanks to its ability to improve the generalization
capability of the model. Also, the accuracy of the models
tends to increase, especially for CNN as we can see in the
Table I. Overall, sadness and anger resulted to be the most

Fig. 4: Confusion matrix obtained using the CNN applied
to the data augmented with pitch scaling and white noise
addition. Rows: ground truth, columns: prediction.

Fig. 5: Confusion matrix obtained using the MLP with input
data augmented with pitch scaling and white noise addition.
Rows: ground truth, columns: prediction.

correctly classified emotions respectively by CNN and MLP, as
we can observe in Figures 5 and 4. We conclude that model
learning based on the augmented dataset is able to provide
almost excellent results in Italian SER.

V. CONCLUSIONS

This work thoroughly presented a pipeline for efficient
Italian SER. After comparing of two models, it resulted that
the Convolutional neural network is more effective than the
Multilayer Perceptron in classifying seven emotional states
included in a publicly available dataset. It is important to
underline the role that data augmentation has had in improving
the classification of emotional states and ensuring improved
recognition rates with respect to every class.

In the future, we are going to a) assess the way data
augmentation influences SER in language-agnostic settings
[19], b) experiment with few-shot learning approaches [20],
and c) work with embeddings of diverse models at the same
time [21].
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