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Abstract—Correct traceability of muscle identity within a
predefined set of muscles in EMG studies is relevant in the
periodic evaluation process of muscle training programs (for
athletes), and in routine reviews for muscle rehabilitation. This
article proposes hybrid deep learning CNN-LSTM models to
classify the muscle directly from sEMG signals. These models
allow for effective feature extraction and learning of short-term
and long-term sequential dependencies. Two training setups are
proposed: one using weight initialization provided from layer-
wise unsupervised pretraining and another one using random
initialization. Two validation scenarios are described to assess
performance: testing on new contraction bursts from already-seen
subjects in the training step (intrapersonal validation, useful in
follow-up), and testing on a leave-one-out subject (interpersonal
validation). Results indicate that the model can correctly classify
different muscle groups in patients that already have been
screened, but fails in distinguishing between symmetrical muscles.

I. INTRODUCTION

Surface Electromyography (sEMG), is a technique that
captures the electrical activity that is transferred to the surface
of the skin, where non-invasive electrodes are located. This
technique is currently employed for different types of applica-
tions, such as rehabilitation [1], advanced myoelectric control
of prosthetic systems [2], gesture recognition [3], training
program effectiveness, ergonomics [4], and movement analysis
[5].

sEMG can be seen as an easier-to-use alternative for
patients/users as it does not harm the soft tissue nor leave
subsequent scarring, compared to other invasive EMG ap-
proaches. Also, this technique allows for unlimited reiteration
of tests in the very same spot/muscle, making it ideal for
the rehabilitation of neuromuscular disorders. Throughout an
electromyography study, physicians and practitioners keep
track of the muscles and exact locations where sEMG sensors
are placed, either to assess the performance of the muscle
or for periodic evaluation in the rehabilitation process. The
traceability of the muscle involved is crucial and yet, it is
currently done manually, making room for human errors and
latency in the process.

In the present study, sEMG is employed to record electrical
activity over different muscles of interest with the goal of
capturing different muscle contraction bursts, from where a
hybrid deep learning model can analyze patterns and infer
the muscle on which the sensor is located (via classification).
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It’s important to highlight that while muscles contract, the
recorded sEMG contraction bursts are subject to anatomical
and physiological factors that influence the signal such as
muscle size, amount of motor unit potentials, demanded force,
muscle fatigue, presence of abnormal behavior (fibrillation,
fasciculation), existing conditions (myopathy or neuropathy),
electrical interference, among others [6], [7]. These factors in-
crease the complexity of muscle recognition tasks from sEMG
signals, making deep learning models, such as the proposed
hybrid CNN-LSTM, an appropriate candidate solution con-
sidering its capability of extracting multiple relevant features
effectively, while also involving the time-series dependency
inherent in sEMG recordings. To the best of our knowledge,
identification of muscles directly from an sEMG signal has
not been done and this paper introduces a framework to do
so and demonstrates the accuracy in a feasibility study. One
of the most direct exploitations of the results of this paper
is the detection of errors in the measurement protocol of
serial examinations, namely mixing up of the electrodes, or
the omission of inputting the relation between the electrode
number and the muscle on which it is placed.

II. RELATED WORK

Concerning sEMG data processing, machine and deep
learning techniques have been used to extract relevant features
from the acquired signals for particular tasks, such as hand-
gesture recognition and wrist kinematic estimation. In the
study of Simao et al. [8], Feed-Forward Neural Network
(FFNN), Recurrent Neural Network (RNN), Long Short-Term
Memory network (LSTM) and Gated Recurrent Unit (GRU)
are compared for the task of hand gesture classification from
sEMG data obtained from UC2018 DualMyo and NinaPro
DB5 datasets. These two datasets provide a series of activa-
tion bursts that are classified in the above mentioned hand
gestures, which are ready to be used for supervised training
in machine learning and deep learning models. The results
obtained in this study indicate that FFNN, LSTM, RNN and
GRU achieved similar accuracy for the previously mentioned
datasets (around 95% for DualMyo and 91% for Ninapro).
However, LSTM and GRU models used only a third of the
parameters, compared to the other models, meaning smaller
training and prediction times. Another study from Bao et
al. [9] proposes a hybrid model, composed of CNN and
LSTM, for EMG wrist kinematic estimation. For this purpose,
sEMG data is collected from six healthy participants, where
four wrist movements where performed. For the purpose of
obtaining the kinematic estimation, a regression output model
is built by means of integrating effective feature extraction



provided by CNN, along with sequence regression by LSTM.
The hybrid model is compared to CNN and LSTM alone, as
well as with ML-based regression models such as Support
Vector Regression (SVR) and Random Forest (RF). Results
obtained in this study indicate CNN-LSTM’s regressed output
is smoother and considerably more similar to the actual ground
truth than CNN alone, while also outperforming the previously
mentioned models. Moreover, another study from Kumar et
al. [10] also presents a hybrid deep learning approach for
hand activities classification from sEMG signals. This study
proposes the use of CNN, that are capable of extracting deep
features from sEMG signals, along with Bidirectional LSTM,
that extract bidirectional temporal information, for the purpose
of correctly classifying different hand activities. Five different
datasets were used for training and testing: NinaPro DB1, DB2,
DB4, BioPatRec DB2 and UCI Gesture. The classification
accuracy reached by the hybrid model on the previous datasets
surpassed the 90% mark.

III. METHODS

This study proposes the use of sEMG to record electrical
activity over different muscles of interest with the goal of
capturing a series of contraction bursts, from where a hybrid
deep learning model is trained with the purpose of inferring
on which muscle the sEMG sensor is located. To achieve this
goal, the pipeline in Figure 1 is proposed.

Fig. 1. Pipeline: Muscle Classification Via Hybrid Model

A. Data Acquisition

sEMG recordings of contraction bursts from different
muscles are required to train and validate the model. For
this purpose, Trigno Maize Sensor from the company Del-
sys is proposed and employed for this study [11]. Delsys
electromyography instruments tackle the main challenges of
this technology, such as noise signal artifact, contaminated
signal from other muscles (crosstalk), and signal reliability and
consistency. Moreover, their EMG instruments come with an
easy to use software (Trigno Discover) for the data acquisition
and storage. The selected sensor for this study was the Trigno
Maize (dry electrode) grid sensor as it senses 16 different
channels where the individual electrodes are organized in a
4×4 grid with approximately 5mm spacing. The sensor allows
wireless data collection from all 16 electrodes in real-time with
a sampling rate of 1000 Hz.

Concerning the experimental setup, 9 healthy volunteers
participated in the study in Belgium: 5 men and 4 women
ranging from 25 to 71 years old. None of the participants
had any clinical history of neuromuscular disorders that could
potentially affect the study. The steps proposed in the protocol
as well as the possible risks related to the tests were given to
the volunteers. The participants were allowed to stop/leave the
session in case of any discomfort. The data were collected in a

single session where 4 muscles were considered for the study:
left and right biceps, as well as left and right tibialis anterior,
whereby each recording involved a series of concentric and
eccentric muscle contractions for each of these muscles. The
16 channel sensor was placed close to the muscle’s centroid
by considering specific anatomical landmarks and proportional
distances from them (provided in a detailed protocol). The
volunteers where asked to contract the muscle (concentric
contraction) and hold the contraction for around 1 second, then
release and go back to relaxed state (eccentric contraction)
and repeat that every 5 seconds for a total duration of 10
minutes per muscle. This resulted into approximately 120
muscle contractions per muscle for each recording.

B. Data Preprocessing

The acquired sEMG signals come already prefiltered and
normalized by the Delsys acquisition system: a high pass filter
(2-pole Butterworth) and low pass filter (8-pole Butterworth).
Some other prefiltering considerations applied to the sEMG
signals can be seen in the Delsys sEMG Detection and Record-
ing manual [12]. Throughout the duration of each of the sEMG
recordings, two main behaviors can be identified in the signal:
the rest period, in which the muscle is in a relaxed state and the
electrical activity does not deviate too much from the baseline;
and the contraction burst period, where few or multiple motor
units activate different muscle fibers, causing an increment in
the signal amplitude and frequency. In order to identify the
contraction bursts in the sEMG recordings, the beginning and
end of each phase of each muscle activation is determined
by a single threshold algorithm that makes use of the Teager
Kaiser Energy Operator (TKEO), which suppresses the noise
and makes the signal larger; thus, making the bursts more
easily identifiable. The threshold was chosen empirically as a
single value for the whole dataset. Figure 2 shows the detected
activation signals obtained from the proposed algorithm. Since
contraction bursts’ duration can vary substantially between
subjects and even for the same subject throughout the test, only
500 milliseconds of the signal are considered (prioritizing the
onset of the contraction).

Fig. 2. Recorded sEMG signal from a single channel with highlighted
sequences of muscle contraction bursts as detected by the detection algorithm.

The 16 channels offered by the sEMG sensor in the two-
dimensional grid configuration are relatively close to each
other (6 mm). Thus, the electrical activity in an activation burst



Fig. 3. Hybrid CNN-LSTM Model Architecture

does not deviate dramatically between these channels but rather
follows a similar pattern. In this sense, the 16 signals identified
in each burst were used independently (as separate samples),
as a sort of data augmentation strategy. From the total 4361
contraction bursts obtained from the experiments with the
participants, a total of 69776 data samples are obtained after
splitting bursts into the 16 channels. These samples are used for
the training and validation of the hybrid deep learning model.

C. Model Implementation

As can be concluded from the state-of-the-art analysis,
sEMG signal processing is nowadays being approached by
hybrid deep learning techniques with better results compared
to more traditional machine learning techniques. The models
with higher performance normally involved the use of CNN
and LSTM for tasks such as gesture recognition and wrist
kinematics estimation. Based on this, a hybrid CNN-LSTM is
proposed in the current paper as the architecture to address the
muscle classification task. The proposed model is composed of
CNN, LSTM and FC layers, taking advantage of CNN layers
as feature extractors and the LSTM layer to maintain long-
term dependencies that are inherent in sEMG signals. Figure 3
represents the architecture employed. The input tensor goes
through two CNN layers followed by a FC layer, similar to
one of the architectures presented by Xiang Chen et al.[13],
which then goes to one LSTM layer. Notice that LSTM layers
are prone to overfit more easily than CNN layers [9], and for
this reason only one layer of LSTM is defined for this study.
Finally the output of the LSTM goes through a second FC layer
and then a last FC layer with a softmax function providing
the output tensor, which corresponds to the probability of
the four muscle classes. Take into account that some of the
hyperparameters are determined via empirical manual tuning.

The dataset distribution for the training and validation of
the model contemplates two validation scenarios: In the first
one, contraction bursts from eight subjects are used in the
training of the model (80% of samples) and later the model
is validated (20% of samples) on new contraction bursts from
previously seen participants in the training step (intrapersonal
validation). In the second validation scenario, the ninth subject
(leave-one-out) is used to assess the model’s ability to correctly
classify new contraction bursts from unseen participants in the

training step (interpersonal validation); this second validation
scenario was repeated with different leave-one-out subjects,
leading to similar results in all of them. Note that the collected
dataset was obtained from a single session.

D. Model Training and Validation

Due to lack of publicly available pretrained models pro-
cessing the sEMG signal, it was decided to use autoencoders
(AE) to obtain optimal initialization weights for part of the
designed network. A Greedy layer-by-layer unsupervised pre-
training strategy [14] is proposed to obtain the weight initial-
ization of the two CNN layers. This method is known to pro-
vide great generalization properties and to overcome problems
of local optimization during the training phase. In this vein,
AE architectures are built to implement a reconstruction task
for each of the CNN layers, meaning that each of these layers
is isolated and used in the encoder part of its own specific AE
for recontsruction. An encoder-decoder architecture is thus put
in place, where the encoder is driven by the CNN layer, while
the decoder is attached in form of a deconvolution operation
that allows reconstructing the input tensor from the latent
representation. The parameters learned by the encoder part
from both CNN layers are posteriorly transferred and used
in the final model as illustrated in Figure 4.

Fig. 4. Parameter Transfer from Pretraining to the Final Model (Weight
Initialization)

Optimal weights are obtained after training the AE for the reconstruction
task and these are used to initialize part of the designed model
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Fig. 5. Confusion Matrices: Multiclass Classification (a) Binary Classification (b).

IV. RESULTS

Two training setups are presented here: A first one using
the weight initialization provided from the layer-wise unsu-
pervised pretraining step and the second one that only uses
random weight initialization. After training the model for
200 epochs, the model was able to achieve 95.0% (setup 1)
and 92.56% (setup 2) classification accuracy in the valida-
tion dataset (intrapersonal scenario), where new contraction
bursts from already seen subjects where given to the model
for the validation purposes. Concerning the second proposed
validation scenario (interpersonal scenario or leave-one-out),
the model achieved 48% accuracy (in both setups) for muscle
classification of contraction bursts from an excluded subject
in the training. The evolution of the loss, as well as the
validation accuracy over the epochs is presented in Figure 6.
Something interesting that can be seen from Figure 5 (a)
is that when there is a misclassification in the interpersonal
validation, it is often between symmetrical muscles, meaning
for instance that left biceps is more likely to be misclassified
as right biceps and viceversa (also for left and right tibialis
anterior). This behaviour ends up heavily penalizing the overall
accuracy of the model in this second validation scenario and
it is confirmed by performing two additional tests in which
the multiclass classification problem is reduced to a binary
classification problem (biceps vs tibialis anterior, and left
muscles vs right muscles). Confusion matrices from these two
additional tests are included in Figure 5 (b). Further follow-up
recordings would be essential in future studies to determine
the intersession performance of the model.

V. CONCLUSION

The goal of this article is to investigate the possibility of
classifying the underlying muscles directly from the sEMG
signal. This is motivated by the fact that the correct traceability
of the implicated muscles in EMG studies is relevant in the
periodic evaluation process that is carried out for instance in
muscle training program effectiveness for athletes, as well as
in routine reviews for muscle rehabilitation.

The proposed hybrid CNN-LSTM model was validated
in two scenarios: in the first one, the model is tested on
new contraction bursts from already seen subjects in the
training step, where at least 9 out of 10 times the muscle
category was accurately inferred (in both training setups).

Fig. 6. Training and Intrapersonal Validation: Loss and Accuracy over Epochs
for the two training setups

On the other hand, in the leave-one-out validation scenario,
the model could barely classify correctly half of the times,
as it seems incapable of distinguishing between symmetrical
muscles. When constraining the task to a binary classification
problem of biceps vs tibialis anterior, the model is able to
classify these non-symmetrical muscles almost nine out of ten
times (89% accuracy). On the other hand, when switching
the binary classification task to left muscles vs right muscles,
the model only achieves 50% classification accuracy. From
our feasibility study we conclude that muscle category can be
estimated, but not the lateral side as most of the muscles are
mirrored.
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