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Abstract—Self-driving vehicles are expected to dramatically
reduce road accidents and improve the quality of life of millions
of people. However, they still have a long way to go before match-
ing the performance of the best human drivers. In this paper we
tackle the problem of motion prediction of traffic agents. Our
proposed solution combines recurrent and convolutional neural
networks to model the spatial and temporal interactions between
agents. It is based on the encoder-decoder architecture that can
model the past motion of traffic agents, which it improves by
leveraging features extracted from a Bird’s Eye View image of
the driving scene for its predictions. We train and evaluate our
model in the largest publicly available self-driving dataset for
motion prediction. Our model achieves better performance than
approaches based on standalone recurrent neural networks or
standalone convolutional neural networks respectively.

Index Terms—motion prediction, multimodal trajectory pre-
diction, recurrent neural networks, convolutional neural net-
works

I. INTRODUCTION AND RELATED WORK

DRIVING a motorized vehicle on the road is a very
challenging task, considering it requires rapidly adapting

to a constantly changing environment with road actor motion
prediction capabilities. In this section we provide a review of
existing work on the field of motion prediction, considering
works based on recurrent neural networks and convolutional
neural networks separately.

A. Methods based on Recurrent Neural Networks
Recurrent neural networks were one of the first types of
neural networks to be used for motion prediction in traffic
scenarios. This is the case because vanilla RNNs with a
sufficient number of hidden units can approximate any finite
sequence to sequence mapping [1]. A LSTM network is used
in [2] to predict the future longitudinal and lateral trajectories
of vehicles on a highway, as a regression task. A LSTM
network is also used in [3] to predict the future positions of
multiple vehicles at the same time in an occupancy grid. This
LSTM receives the positions, velocities and yaw rates for all
the considered vehicles. Some other methods use additional
RNNs to either output multimodal trajectories or model the
interactions between vehicles. Dai et al. [4] propose a spatio-
temporal LSTM-based trajectory prediction model that uses
two different groups of LSTMs. Different types of LSTMs
are used in [5] to output multimodal trajectories and their
probabilities.

Although RNNs have proven to be very successful in se-
quence to sequence tasks due to their ability to model temporal

data, they struggle to capture other important elements of
motion prediction, such as the interactions between moving
agents and the geometry of the driving environment.

B. Methods based on Convolutional Neural Networks

Researchers have tried to represent their data as images to
be processed by a CNN. A common way of accomplishing this
goal in the motion prediction for traffic scenarios task is to use
a BEV image as the input to the motion prediction model. A
simplified BEV image that describes the locations of vehicles
and lanes is used in [6] to make predictions about intention
to change lane. A CNN with the convolution-deconvolution
architecture [7] is used to output an occupancy map in [8].
Casas et al. [9] use 2 different CNNs to process a rasterized
map and voxelized BEV data in parallel. The extracted features
of the 2 CNNs are concatenated and then 3 different heads are
added on top to detect vehicles, estimate their intention, and
predict their trajectory by the same backbone network.

CNNs can receive images as input in the form of BEV
images of the traffic scene or output images in the form
of an occupancy map. In [10] researchers use convolutional
networks to solve the problem of motion prediction for traffic
agents using BEV images of the traffic scene. In contrast to
RNNs, they are capable of capturing spatial relationships in the
data, which is a prerequisite to model the interactions between
moving agents and take into account driving context. Their
drawback is their inability to model temporal dependencies.

C. Motivation and Contributions

Few approaches to motion prediction for traffic scenarios
have managed to successfully combine recurrent and convo-
lutional networks. Mukherjee et al. [11] feed an Occupancy
Grid Map to a modified LSTM, to predict the future positions
of all cars in the scene. Multi-head attention is used in [12]
after considering a joint representation of the static scene
and surrounding agents. Our approach expands this area by
efficiently combining spatial and temporal features of the
driving scene, which are fed to an LSTM-based decoder
that can accurately predict multiple future trajectories for the
target agent. The aforementioned advancements are provided
as open-source to the scientific community.

II. HYBRID MOTION PREDICTION

In this section we present our proposed hybrid method for
predicting multiple trajectories for traffic agents along with
their probabilities. First, we define the problem of motion979-8-3503-3959-8/23/$31.00 ©2023 IEEE



prediction for moving traffic agents on the road and the used
notation, then we discuss our proposed approach including the
network architecture and the optimization function used.

A. Problem definition

Let us denote the discrete times at which the perception
system outputs state estimates as T = {t1, t2, . . . , tT }. Also,
we denote the state estimate of the i-th agent at time tj as
Sij , where i = 1, 2, . . . , Nj , with Nj being the number of
unique agents picked up by the perception system at time
tj . Naturally, the number of unique agents perceived at each
time-step differs as new agents come within proximity of the
vehicle’s sensors and others move further away.

In addition to the state estimates, through the dataset we
have access to a semantic map R. This semantic map includes
information about the number of lanes, the direction of each
lane and which lane connects to which. In an additional layer
of detail, precise lane geometry is included. With the use of the
state estimates as well as the semantic map, we can construct
a BEV image of the target agent’s surrounding environment,
which includes static and dynamic components.

We want to predict the future behavior of certain moving
agents that interest us, which we call target agents (TAs). Their
behavior can be described by their predicted future state esti-
mates ŜTAs = {Ŝi(n+1), Ŝi(n+2), . . . , Ŝi(n+K)}Nn

i=1, where K
is the prediction window, meaning the amount of time steps for
which we are interested in predicting the agents’ behavior (we
denote the current time step as tn). Without loss of generality
and for simplicity’s sake, in this work we limit ourselves to
the prediction of the target agent’s future x- and y-positions
instead of their full state estimates. The full state estimates of
the target agents can be derived using the known agents’ states
along with the predicted positions. So, instead of ŜTAs, we
want to predict x̂TAs = {x̂i(n+1), x̂i(n+2), . . . , x̂i(n+K)}Nn

i=1

and ŷTAs = {ŷi(n+1), ŷi(n+2), . . . , ŷi(n+K)}Nn
i=1 respectively.

Essentially, taking the probabilistic nature of the problem
into account, we want to compute the conditional distribution

P (x̂TAs, ŷTAs|Sn, R) . (1)

Here R is the semantic map, while Sn corresponds to the full
state estimates of all Nn agents up to and including the current
time step tn, with H being the number of historic time steps
considered:

Sn =
{
Si(n−H), Si(n−H+1), . . . , Si(n)

}Nn

i=1
. (2)

In simpler terms we want to compute the conditional distribu-
tion of the agents’ future x- and y-positions, given the agents’
current and past state estimates along with the semantic map.
Since eq. (1) is a mutual distribution over series of positions
of several independent agents, it can be intractable. To reduce
the computational requirement, we treat each target agent
separately and compute the following conditional distribution:

P (x̂A, ŷA|Sn, R) , (3)

where x̂A = {x̂A(n+1), x̂A(n+2), . . . , x̂A(n+K)} and ŷA =
{ŷA(n+1), ŷA(n+2), . . . , ŷA(n+K)} and A is the selected target
agent.

B. System description

We assume access to the historic state estimates of the target
agent A for the time steps {tn−H , tn−H+1, . . . , tn−1} as well
as its state estimate for the current time step tn. All these state
estimates together are denoted by SA, which can be expressed
as follows:

SA =
{
SA(n−H), SA(n−H+1), . . . , SA(n)

}
. (4)

Here, H represents the number of historic state estimates that
are considered for the prediction. The state estimates SA are
coming from a perception system after it processes the output
of the ego-vehicle’s sensors. In the purposes of our model,
the state estimate SA(j), which refers to the state estimate of
the target agent A at the time step tj , contains the following
information:

SA(j) =
{
xA(j), yA(j), ẋA(j), ẏA(j), φA(j), aA(j)

}
, (5)

where:
• {xA(j), yA(j)}: are the target agent’s x- and y-position
• {ẋA(j), ẏA(j)}: are the target agent’s velocities in the

longitudinal and lateral directions respectively
• φA(j): is the target agent’s yaw in radians
• aA(j): is a binary value indicating the availability of the

aforementioned information for the time step tj
The future trajectories of the target agent are repre-

sented by their x- and y-positions over time. We want
to make predictions for the future trajectory of the tar-
get agent spanning K time steps into the future so es-
sentially, we want to predict xA = {xA(n+1), xA(n+2),
. . . , xA(n+K)} and yA = {yA(n+1), yA(n+2), . . . , yA(n+K)}.
To address the multimodality associated with motion pre-
diction, the model produces multiple separate future tra-
jectory predictions. Each mode is represented by its own
index and the output of the model is M possible future
trajectories x̂A = {x̂m

A(n+1), x̂
m
A(n+2), . . . , x̂

m
A(n+K)}

M
m=1 and

ŷA = {ŷmA(n+1), ŷ
m
A(n+2), . . . , ŷ

m
A(n+K)}

M
m=1 along with their

probabilities pm, such that
∑M

m=1 pm = 1. Here m indicates
the mode index and K as explained is the prediction window.
With this approach we formulate the problem of motion
prediction as a regression problem to the future trajectories
of the TA.

To approximate the conditional distiribution (3) and make
predictions about the future trajectory of a particular TA,
the sequence of the last H + 1 state estimates is fed into
the encoder of the model. The final cell state and hidden
state produced by the encoder form the encoder vector, which
encapsulates the state estimate input sequence. At the same
time the state estimates SA are used to rasterize a BEV image
of the driving scene. We experimented with a simple 3-channel
RGB BEV image that contains only semantic information,



as well as a 17-channel image that additionally contains the
positions of the target agent and the surrounding agents for 6
time steps of history, in seperate channels. We call the first
approach Semantic-Hybrid and the second Dynamic-Hybrid.
A convolutional neural network is then used to extract features
from this image, which are concatenated with the encoder
vector to combine spatial and temporal features.

Our hybrid model received the state estimates SA(j) as given
by eq. (5) for H historic time steps. In cases where the historic
information of the target agent consisted of less than H time
steps, the availability indicator αA(j) was given the value of
zero for the time steps whose historic information was absent.
This allowed the model to generalize and to be able to make
accurate predictions even with less historic information, which
is the case in the validation and test sets. Furthermore, data
standardization is adopted in the state estimates SA that are
fed to the encoder, since the input features exist on wildly
different scales.

C. Network architecture

The detailed network architecture, which is explained in detail
in the following paragraphs, is illustrated in Fig. 1.

Fig. 1: The detailed network architecture of the hybrid ap-
proach.

1) Encoder-Decoder: The historic and current state esti-
mates of the target agent SA first pass through some fully
connected layers, to match the dimensions of the LSTM
modules and to allow the network to capture the complex
structure of the state estimate data. We use 3 fully connected
layers for this purpose, with all hidden layers as well as
the output dimension being equal to 256. A ReLU activation
function follows each layer’s linear output. After H recursive
updates in the two LSTMs, their last hidden and cell states
h
(1)
n ,c(1)n and h

(2)
n ,c(2)n form the encoder vector and are used

by the decoder as well as the probability prediction module.
The decoder has a similar architecture to the encoder,

consisting of 2 stacked LSTM layers followed by 3 fully
connected layers. the last one has a dimension of 2M . That is
because the output of the last fully connected layer is the final
prediction of the model for the M modes of x- and y-positions
of the target agent at the corresponding time step.

2) Convolutional neural network: The convolutional neural
network has been added to the encoder-decoder architecture as
a feature extractor. The BEV rasterized image of the driving
scene is directly fed to the CNN backbone, which after some
experimenting is chosen to be a ResNet34 [13]. The first 4
layers of the network are followed by an Average Pooling
layer, while the final fully connected layer of the ResNet34 is
omitted. The backbone CNN is followed by 2 fully connected
layers with output dimensions of 1024 and 512 respectively.
The ResNet34 that is used as a backbone feature extractor is
pretrained for classification on ImageNet.

Both the Semantic-Hybrid and the Dynamic-Hybrid models
use the architecture illustrated in Fig. 1. The only difference
is that modifications need to be made to the ResNet34 in
the case of the dynamic-hybrid model, since it is designed
to handle only 3-channel images by default. Specifically, the
input dimension of its first convolutional layer is increased to
match the number of image channels.

3) Probability Prediction Module: The probability predic-
tion module consists of 2 fully connected neural network
layers. A ReLU activation function is included as the non-
linearity in the first fully connected layer, while the second
layer does not contain a non-linear activation function. The
output of the second fully connected layer is however passed
through the Softmax function, to ensure that the predicted
probabilities sum up to one.

D. Optimization function

Assuming that the ground truth positions are modelled by
a mixture of multi-dimensional independent Normal distribu-
tions over time, yielding the likelihood:

∑
m

pm N
(
xn+1,...,n+K

∣∣∣x̂1,...,M
n+1,...,n+K ,Σ = 1

)
N

(
yn+1,...,n+K

∣∣∣ŷ1,...,Mn+1,...,n+K ,Σ = 1
)

=
∑
m

pm
∏
t

N (xt|x̂m
t , σ = 1)N (yt|ŷmt , σ = 1) . (6)

This gives us the following NLL loss for the particular target
agent A:

NLLA = − log
∑

m elog pm− 1
2

∑
t(x̂

m
A(t)−xA(t))

2
+(ŷm

A(t)−yA(t))
2

. (7)

Our network tries to minimize the corresponding loss function
over all training examples, resulting in the minimization of:∑

i

NLLi, (8)

where i iterates over all training examples.
Since the resulting loss function (7), is a Log-Sum-Exp

function (LSE) [14], we use the log-sum-exp trick for nu-
merical stability. This trick is used to improve accuracy and



avoid underflow and overflow problems when dealing with
very small or very large numbers. The formula is:

LSE(x1, . . . , xn) = x∗ + log
(
ex1−x∗

+ . . .+ exn−x∗)
, (9)

where x∗ = max{x1, . . . , xn}.

III. EXPERIMENTAL RESULTS

For our experiments we used the largest publicly available
dataset for motion prediction, which is provided by Lyft Level
5 [15]. We used 5 seconds of historic state estimates resulting
in 50 timestamps.

We compare the Semantic-Hybrid and Dynamic-Hybrid
models to the following baselines: (i) Encoder-Decoder model,
by removing the CNN from the hybrid model and only feeding
it with the state estimates of the target agent and (ii) Multiple-
Trajectory Prediction (MTP) [10].

A. Comparative evaluation

The performance of the models in some of the most
commonly used metrics for motion prediction are presented
in Table I. These include the negative log likelihood (NLL)
of the ground truth given each model’s predicted trajectories,
the displacement between the ground truth and its closest
predicted trajectory at 1s and 5s (same as final displacement
error). They also include the average displacement error oracle,
meaning as calculated by only considering the closest mode to
the ground truth and the weighted average displacement error
(WADE), which weights all modes according to their predicted
probability.

TABLE I: Performance of the models on the most common
motion prediction metrics for the validation dataset.

Displacement(m)

Method NLL @1s @5s ADE WADE

Enc-Dec 51.15 0.1774 1.2681 0.6097 1.3114

MTP 25.17 0.1564 0.6541 0.3879 0.8600

Sem-Hyb 22.31 0.1469 0.7846 0.4231 0.9826

Dyn-Hyb 16.49 0.1331 0.6623 0.3718 0.8008

As we can observe, the standalone encoder-decoder model
that does not use a CNN has significantly worse performance
on all motion prediction metrics. This highlights the perfor-
mance uplift that can be gained by feeding the scene context
to a motion prediction model. The Semantic-Hybrid model
achieves 11% lower NLL compared to the MTP model, while
the Dynamic-Hybrid model outperforms it by a massive 34%.
On displacement based metrics, the Semantic-Hybrid model
can not keep up with the MTP model, while the Dynamic-
Hybrid model surpasses it in all metrics apart from the final
displacement error.

B. Comparisons per agent type

The Lyft Level 5 dataset contains multiple agent types. More
spesifically, the target agents in the dataset can be vehicles,

TABLE II: The negative log likelihood loss of all models
broken down by agent type.

NLL

Method Total Vehicles Cyclists Pedestrians

Enc-Dec 51.15 51.25 70.88 19.13

MTP 25.17 25.19 38.16 7.27

Sem-hyb 22.31 22.36 31.15 7.62

Dyn-hyb 16.49 16.36 31.27 6.02

cyclists or pedestrians. Table II presents the negative log like-
lihood of all trained models, broken down by the type of agent
whose trajectory they are predicting. This way comparisons
can be made about the relative accuracy of the predictions
between different agent types. It can be observed that all mod-
els achieve roughly identical performance in vehicle motion
prediction as they do when including all agent types. This is
expected as vehicles form the vast majority of agents in the
dataset. Furthermore, every model produces higher NLL scores
when predicting the future motion of cyclists. The relative
difference between the NLL scores of vehicles and cyclists
seems to increase for better performing models, with the
dynamic-hybrid model producing almost double NLL scores
when predicting the future motion of cyclists.

As far as pedestrians are concerned, their future trajectory
seems to be easier to predict as every model achieves lower
NLL scores for them. This is partly because pedestrians travel
shorter distances when compared to the rest of the agents
within the 5s prediction window. The negative log likelihood
metric as defined by eq. (7), assumes unit variance, meaning
it takes lower values for shorter trajectory predictions.

IV. CONCLUSIONS

Motion prediction of moving agents on the road is an im-
portant prerequisite of self-driving. In this work we presented
two variations of a hybrid approach that combines recurrent
and convolutional neural networks. Our hybrid models were
able to perform very well on a variety of traffic scenarios
and produced low-error 5s predictions. The importance of
giving a detailed representation of the traffic scene to a motion
prediction model is highlighted in comparative experiments.

Given the multimodal nature of driving, a route planning
system could leverage all modes of predicted trajectory for
agents surrounding the self driving vehicle to generate the final
route it should follow.

Although our subsampling process ensured that the training
examples given to the model were not similar to each other,
future research could focus on the improvement of the sub-
sampling procedure, which could lead to faster convergence.
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