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Abstract—Real-time crop growth stage estimation is essential 

to facilitate improved crop management, disease mitigation, and 

resource planning. This paper describes a nonlinear filtering 

technique that combines weather and multi-modal satellite image 

data to estimate crop growth stages at the pixel level. This 

procedure is an improvement, in terms of efficiency and 

robustness, over a procedure previously published by the authors. 

Results show that the procedure computes pixel-level crop growth 

stages effectively and provides accurate estimates when compared 

with ground truth crop growth stage data. 
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I. INTRODUCTION  

Real-time crop growth stage estimation (also referred to as 
phenological states) is required for precision agriculture, 
particularly for facilitating improved crop management, pest and 
disease mitigation, and resource planning. This is an input to 
crop management decisions, including irrigation, fertilization, 
pesticide application, irrigation management and harvesting. For 
example, information on growth stage, when coupled with 
information on soil moisture, can be used to determine field 
specific risks of sclerotinia infection in canola.  

Differences in cultivars or soil and weather conditions imply 
that the timing of crop stages cannot be easily estimated, even 
when planting date is known. Traditional approaches to estimate 
crop growth stages using crop models can often achieve Root 
Mean Square Error (RMSE) of 4 days or less [1]. However, such 
models require detailed information on soil moisture, 
temperature, rainfall, solar radiation and windspeed as inputs. 
Even then, these models require calibration based on site-
specific conditions’ ground truth data [2]. Such restrictive 
constraints impede large scale use of these models. Regular and 
detailed survey of fields are necessary for farming operations. 
However, manual survey may not be possible given the 
associated costs, particularly considering large crop fields, for 
example in North America. Thus, even if you assess growth 
stage at the edge of the field, this may not be accurate for other 
areas of the field. However, a cost-effective regular monitoring 

can be achieved by satellite remote sensing. In this case, other 
than producers, crop insurers can also use crop growth stage 
estimates as a cost-effective alternate to manual field survey for 
a large area, after insurance claims. 

In conventional remote sensing approaches, electro-optical 
sensors have been used in pair of a limited weather data e.g., 
temperature for post-season growth estimation. However, gaps 
in data coverage, due to cloud interference, limit the 
effectiveness of any solution solely based on visible and infrared 
Earth observation sensors. Hence, reliable, and frequent access 
to remote sensing data is desirable to determine time-specific 
and field-specific growth stages. This can be achieved by 
combining data from electro-optical sensors with synthetic 
aperture radar (SAR) imagery. The latter provides all-weather, 
day-night, large-area surveillance with high-spatial-resolution 
coverage. Moreover, these two data types are complementary in 
nature for many applications including crop growth monitoring. 
While optical data provides information on color and 
temperature of objects, SAR response largely depends on the 
geometrical and dielectric properties. SAR sensors are usually 
demonstrating meaningful sensitivity to the variations of canopy 
structures depending on crop type and its growth stage.  

Estimation of crop phenological stages has sometimes been 
considered as a classification problem [3,4]. Such approach 
lacks in exploiting the information that growth stages change in 
a specific sequence. Among recursive procedures, a particle 
filter-based method is developed for growth stage estimation of 
rice [5]. This procedure uses linear combination of dual-pol 
TerraSAR-X parameters as state variables. Due to this selection, 
the procedure has limitations in terms of computational 
complexity and also extension of the formulation to fuse multi-
satellite data, e.g., optical and SAR, is not straightforward [6].  

In our previous work [6], a number of above discussed 
limitations are addressed by incorporating crop maturity level as 
a variable directly related to crop growth stages. The procedure, 
in [6], models response of remote sensor data to crop growth 
stages using gathered ground truth. Recursive estimation is 
performed using particle filter, which is initialized based on the 
variability of planting date. Crop maturity level is predicted 
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based on growing degree days (GDD) data, which is computed 
from the average daily temperature. Crop maturity is updated 
based on the normalized difference between model predicted 
sensor response and observed sensor response. The procedure in 
[6] is validated for field-level canola growth stage estimation 
using SAR data from TerraSAR-X and RADARSAT-2. 

The current work extends the field level estimates to pixel-
level (10m) uses both SAR and optical data and applies the 
procedure to a set of crops (canola, corn, soybean, and wheat). 
Instead of particle filter, a grid-based approach is developed to 
reduce the computational cost of performing estimation over a 
large area without negatively effecting estimation performance. 
This paper also provides detailed description of the estimation 
process, which is not available in [6]. In this paper, Section II 
provides details of the developed crop growth stage estimation 
procedure; and Section III discusses the results. In Section IV 
conclusions are provided and future work is described. 

II. CROP GROWTH ESTIMATION PROCEDURE 

In this section, choice of state variable is discussed, optical 
and SAR imagery feature selection and modelling is described 
and steps of grid-based filtering are discussed.  

A. Choice of State Variable  

Choice of state variable is a key aspect of development of a 
recursive estimator. The ground truth crop growth stages 
available for this work was collected in BBCH (Biologische 
Bundesanstalt, Bundessortenamt and CHemical) scale which is 
a code system based on Zadoks scale [7]. BBCH is defined by a 
finite set of integer values. The discrete nature of  BBCH makes 
it unsuitable to be used as a state variable. Also, changes in 
BBCH are highly non-linear with respect to calendar days or key 
weather indices, such as GDD. GDD is accumulated averaged 
daily temperature range, subtracted by the assumed minimum 
temperature required for growth to proceed. For most plants, 
phenological development is strongly related to GDD. Hence, it 
has been used by agronomists to predict growth stages when the 
planting date or date of another key growth stage is known. Due 
to the of GDD’s characteristics, a state variable, crop maturity 
[6], is developed which has a linear relationship with GDD. 
Crop maturity is a continuous variable that maps the growth 
stages of each crop within [0,1]. For a crop to reach a specific 
BBCH, a certain number of GDD is required on average. Crop 
maturity for any growth marker is the ratio of average GDD 
required to reach that stage to the average GDD required by a 
crop during its lifetime (Eq. 1). This makes BBCH easily 
convertible to crop maturity and vice versa. GDD range required 
by crops to reach a specific BBCH code can be found from 
agronomy sources, such as North Dakota Agriculture Weather 
Network1.  Instead of GDD, calendar days can also be used to 
compute crop maturity. However, this will make crop maturity 
and crop growth estimation procedures specific to a location.  
Crop maturity�n� = ���.  ��� ��� ���� ����� �� �����   !" �#� $��% ���&'#� &���

���.  ��� ���� ('$��'%� #��&�       �1� 
B. Satellite Imagery Feature Selection  

Many studies have reported strong dependency of growth stages 
with satellite vegetation indices derived from optical imagery 
[2] and SAR-imagery-derived polarimetric parameters [8, 9]. In 
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this work, two types of SAR satellite data are used: C band 
compact polarimetric data from the RADASAT Constellation 
Mission (RCM) and C-band dual-pol data from Sentinel 1. In 
this research, the SAR data is combined with Sentinel 2 as 
multispectral data. For each data type, tens of features can be 
extracted. As the feature set corresponding to each data type is 
highly co-dependent, using all of the features for crop growth 
estimation will increase computational cost and redundancy as 
well as possible large biases in estimated growth stage. This 
necessitates the development of a robust selection procedure 
using ground truth data of crop maturity. As ground truth may 
not be available on image acquisition days, crop maturity is 
interpolated using GDD data. This provides crop maturity and 
image feature pair for each ground available satellite image 
acquisition date. Moreover, to address the limitations of 
correlation measures, in this work Maximal Information 
Coefficient (MIC) [10] is used which computes normalized 
mutual information. MIC value ranges between [0,1] with 
higher value representing higher dependency between variables. 

Based on pairwise MIC values among all features and crop 
maturity, a greedy algorithm is developed for imagery feature 
selection. Steps of the procedure are as follows [9]: 

1. Sort image features based on their MIC with crop 
maturity and truncate the list based on a threshold *+  

2. Initialize selected feature set ,  by adding the image 
feature with the highest MIC with crop maturity. 

3. For each remaining feature  

a. Add the feature to , if its highest MIC with the 
features already in , is less than threshold *- 

4. If success in Step 3a, repeat Step 3. 

The above procedure ensures that the selected features have 
high MIC with crop maturity and have low pairwise MIC among 
the selected set. The selection procedure is performed for each 
satellite image type. 

The list of selected features is provided below: 

• RCM: Conformity, Relative phase delta, RV, Contrast, 
Stokes 3 

• Sentinel 1: Entropy, C22, Degree of Linear Polarization, 
Stokes 1 

• Sentinel 2: MTCI, CVI, MSI, MYVI, B2 

C. Measurement Model 

Assuming satellite features as observations, and satellite 
image feature response model to growth stages as measurement 
model. The model can be developed using ground truth growth 
stages and image data. As an example, ground truth MTCI 
feature (Sentinel 2) corresponding to corn is shown against crop 
maturity in Fig. 1. At each point of crop maturity, the feature 
distribution is assumed to be Gaussian. The mean and standard 
deviation of this distribution are computed at regular intervals 
on the maturity axis. Expected feature distribution at any value 
of crop maturity, within the range where feature data exists, is 
obtained through interpolation.  



 

Fig. 1: Corn maturity vs. Sentinel 2 feature MTCI. 

D. Crop Growth Stage Tracking Filter 

Fig. 2 shows stages of the tracking filter. At initialization, 
the crop maturity is assigned by a value based on the variability 
of base GDD values of the crop under consideration at planting 
(or seeding). Starting point of GDD accumulation varies crop to 
crop. Daily prediction is performed using GDD data when 
images are available [6]. In this work in the contrary, if satellite 
image(s) are available on a particular day, crop maturity can be 
updated based on the statistical deviation of expected features 
from the measured features. Data from different satellite types 
are seamlessly fused in this measurement level fusion 
architecture. The key difference between [6] and the current 
work is the choice of nonlinear filter. While [6] used particle 
filter, in this work grid-based tracker is used to reduce 
computational cost and remove randomness from the estimates 
given specific measurements. Unlike in [6], which performs 
field-based crop maturity estimates, this work performs the 
estimation at each 10m×10m pixel. 

 
Fig. 2: Crop growth stage tracking filter. 

Since the number of pixels can be very large, the growth 
stages statistics are approximated as Gaussian to reduce storage 
requirement. For a particular pixel, let ./�0|0�  denote the 
estimated state at time-step 0  given data up to that point and 
2�0|0� denote the corresponding error variance. 

The initialization point for each crop is set when their 
expected maturity exceeds a threshold. The threshold 
corresponds to a GDD that represents the latest planting time. 
Following (1), the expected maturity at the initialization point, 
denoted by .3, is computed as the ratio of accumulated GDD at 
the initialization point to the average GDD for the crop lifetime. 

Initialization is performed as follows: 

./�0|0� = .3/2  and 2�0|0� = .3-/12 (2) 

The above equation assumes crop planting is uniformly 
distributed between the 0 GDD (at this point the crop can be 
planted) and .3 ×  average GDD for crop lifetime. So, Daily 
prediction is performed from day 8 to day 8 + 1 as follows: 

./�8 + 1|8� = ./�8|8� + ∆.�8 + 1�  (3) 

where ∆.�8 + 1� is the expected change in maturity. It is the 
ratio of change of GDD on 8 + 1 th day to the average GDD for 
the crop lifetime. Prediction covariance is obtained as follows: 

2�8 + 1|8� = 2�8|8� + ∆.�8 + 1�-;-    (4) 

where ; is a constant that is computed from the ground truth 
variation of GDD at different crop maturity values. 

For update 2< + 1 samples are obtained from the Gaussian 

=./�8 + 1|8�, 2�8 + 1|8�? at uniform intervals between 

./�8 + 1|8� − 3.5C2�8 + 1|8�  and ./�8 + 1|8� +
3.5C2�8 + 1|8� . Let the D th sample be denoted as 
./E�8 + 1|8� and corresponding pdf be denoted as FE�8 + 1|8�, 
which is computed as  

FE�8 + 1|8� =
      +

G-HI=8 + 1J8?
eL M.N

OP8 + 1Q8RPS/T=8 + 1J8?LS/=8 + 1J8?RU
     (5) 

Satellite image feature distribution assuming maturity ./E�8 + 1|8� being the truth is obtained from the measurement 
model. Let the Gaussian distribution be denoted as 

PVE=./E�8 + 1|8�?, ΣE=./E�8 + 1|8�?R  and the measured 

feature be denoted as V%����8 + 1� . Then, a posteriori 
likelihood of the D-th grid point (crop maturity) is given by: 

XE�8 + 1|8 + 1� =
            FE�8 + 1|8� +

C|-HYT| eL3.Z�[TL[\]^_�`YTab�[TL[\]^_�      (6)  

The updated Gaussian distribution is obtained as follows: 

  ./�8 + 1|8 + 1� = +
c ∑ XE�8 + 1|8 + 1�./E�8 + 1|8�-ef+Eg+    (7) 

2�8 + 1|8 + 1� =+
c ∑ XE�8 + 1|8 + 1�./E�8 + 1|8�--ef+Eg+ − ./�8 + 1|8 + 1�-  (8) 

where c is a normalization constant, given by 

h = ∑ XE�8 + 1|8 + 1�-ef+Eg+                             (9) 

III. RESULTS  

Results from the crop growth estimation procedure 
developed in this work are compared to the ground truth data 
collected at a specific location during the season of 2021 in 
Carmen, Manitoba (Canada). Here, we considered the starting 
GDD or .3 × average GDD for crop lifetime equal to 20. Also, 
the total number of grid points is set to be 81, i.e. < = 40. 

In Fig. 3 and Fig. 4 crop maturity estimates are compared to 
ground truth data collected weekly at specific canola and wheat 
pixel locations. The solid green line shows daily crop maturity 
estimates, and the red dash-dot and dashed lines show the upper 
and lower limits of 95% confidence interval. The sign ‘+’ 
corresponds to ground truth crop maturities, which are converted 



from BBCH values. As shown in Fig. 3 and Fig. 4 the ground 
truth matches well with the estimates, in most of the cases. 
However, there are ground truth observations that appears to 
have inconsistent values (Fig. 3), such as large deviation from 
the remaining ground truth sequence. Overall standard errors in 
number of days are 5.7 days for canola, 4.9 days for corn, 5.8 
days for soybean and 4.9 days for wheat. In all cases, except for 
soybeans, the error data is averaged over twelve ground truth 
data locations over the 2021 season, one from each of 12 fields. 
For soybean, eleven ground truth locations are determined to be 
reliable.  Note that a large part of the error standard deviations 
is explained by what appears to be erroneous ground truth data. 

 

Fig. 3: Estimated and observed canola growth stages at a pixel in field 103. 

 

Fig. 4: Estimated and observed wheat growth stage at a pixel in field 404.  

Fig. 5 shows the growth stages of canola on four different 
days within the 2021 season in Carman, MB. A color code used 
to show canola’s phenology. The darker shades of any color 
mean an early phase of corresponding growth stage. As shown 
in Fig. 5, canola is at the initial stage on June 6th. On June 26th 
canola reaches close to flowering. For some canola fields, 
different parts are at different growth stages. Clear separation of 
such areas show that pixel level crop growth monitoring is 
effective. Many canola fields reach pod development on July 
16th and on August 6th in most cases canola is ripe. 

IV. CONCLUSIONS AND FUTURE WORK 

In this work, a recursive nonlinear estimator is developed 
that efficiently combines weather and multi-modal satellite 
image data to estimate crop growth stages. In terms of 
computational efficiency and robustness, the procedure is an 
upgrade from a procedure previously published by the authors. 
The procedure, in the current work, is applied to fuse SAR data 
from RCM and Sentinel 1 with optical data from Sentinel 2 to 
achieve improved crop growth stage estimation. Growth stages 
of four crops, namely canola, corn, soybean and wheat, are 
estimated at fields in Carman, Manitoba (Canada) for the 2021 
season and results are compared to ground truth collected 
weekly at forty-seven fields. The standard error of the growth 

stage estimates, when compared to the ground truth, are below 
6 days even though the collected ground truth data appears to be 
anomalous in some cases. Evolution of canola over the season 
shows that the procedure can effectively distinguish different 
levels of maturity of a crop at the same field. 

 
Fig. 5: Canola growth Stages in Carmen, MB on four days of 2021 season. 

In the future, further analysis will be performed on the 
parameters used in the crop growth stage estimation procedure. 
For example, the number of grid points used in the update stage 
of the filter will be analyzed with the objective of further 
reducing the computational cost without effecting the growth 
stage estimation performance. 

REFERENCES 

[1] H. S. Yang, A. Dobermann, J. L. Lindquist, D. T.Walters, T. J. Arkebauer, 
& K. G. Cassman, “Hybrid-maize—A maize simulation model that 
combines two crop modeling approaches,” Field Crops Research, 87(2–
3), pp. 131–154, 2004. 

[2] L. Zeng, B. D. Wardlow, R. Wang, J. Shan, T. Tadesse, M. J. Hayes, D. 
Li, “A hybrid approach for detecting corn and soybean phenology with 
time-series MODIS data,” Remote Sensing of Environment, Vol. 181, pp. 
237-250, 2016. 

[3] A. Mercier et al. "Evaluation of Sentinel-1 & 2 time series for predicting 
wheat and rapeseed phenological stages." ISPRS Journal of 
Photogrammetry and Remote Sensing 163, pp 231-256, 2020. 

[4] H. Wang, et al. "Crop phenology retrieval via polarimetric SAR 
decomposition and Random Forest algorithm." Remote Sensing of 
Environment 231, pp. 111234,.2019.   

[5] C. G. De Bernardis, F. Vicente-Guijalba, T. Martinez-Marin, J. M. Lopez-
Sanchez, “Estimation of key dates and stages in rice crops using dual-
polarization SAR time series and a particle filtering approach,” IEEE J. 
Sel. Top. Appl. Earth Observ. Remote Sens. 8 (3), 1008–1018, 2015. 

[6] H. McNairn, X. Jiao, A. Pacheco, A. Sinha, W. Tan, and Y. Li, 
“Estimating canola phenology using synthetic aperture radar,” Remote 
Sensing of Environment (ELSEVIER), Volume 219, Pages 196-205, 
December 2018. 

[7] U. Meier, et al. "The BBCH system to coding the phenological growth 
stages of plants–history and publications." Journal für Kulturpflanzen 
61.2: 41-52, 2009. 

[8] F. Canisius, et al, “Tracking crop phenological development using multi-
temporal polarimetric Radarsat-2 data,” Remote Sens. Environ. Vol. 210, 
pp. 508–518, 2017. 

[9] A. Sinha, W.Tan, Y. Li, H. McNairn, X. Jiaob, M. Hosseini, "Applying a 
particle filtering technique for canola crop growth stage estimation in 
Canada," SPIE Remote Sensing Conf., Sept. 2017. 

[10] D. Reshef, et al, “Detecting novel associations in large datasets,” Science, 
Vol. 334, Issue 6062, pp. 1518-1524, 2011. 

 

M
a

tu
ri

ty


