
Rotating labeling of entropy coders for synthetic
DNA data storage

Xavier Pic, Eva Gil San Antonio, Melpomeni Dimopoulou, Marc Antonini
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Abstract—Over the past years, the ever-growing trend on data
storage demand, has motivated research for alternative systems of
data storage. Because of its biochemical characteristics, synthetic
DNA molecules are considered as potential candidates for a new
storage paradigm. Because of this trend, several coding solutions
have been proposed over the past years for the storage of digital
information into DNA. Despite being a promising solution, DNA
storage faces two major obstacles: the large cost of synthesis
and the noise introduced during sequencing. Additionally, this
noise increases when biochemically defined coding constraints
are not respected: avoiding homopolymers and patterns, as well
as balancing the GC content. This paper describes a novel
entropy coder which can be embedded to any block-based
image-coding schema and aims to robustify the decoded results.
Our proposed solution introduces variability in the generated
quaternary streams, reduces the amount of homopolymers and
repeated patterns to reduce the probability of errors occurring.
While constraining the code to better satisfy the constraints would
degrade the compression efficiency, in this work, we propose an
alternative method to further robustify an already-existing code
without affecting the compression rate. To this end, we integrate
the proposed entropy coder into four existing JPEG-inspired DNA
coders. We then evaluate the quality —in terms of biochemical
constraints— of the encoded data for all the different methods
by providing specific evaluation metrics.

I. INTRODUCTION

Images represent a big percentage of the data stored in data
centers and a large majority of these images is considered
as “cold” (very infrequently accessed). For that reason, it is
crucial to develop image coders that have a good compression
performance and are adapted to the problematics inherent to
DNA data storage. Over the past years, some coders [1], [2],
[3], were developed to encode data into DNA. An international
JPEG standardization group, JPEG DNA, was formed in 2020
to address the problem of standardizing the coding of still
images on molecular media, with a standard expected in 2025.
In this paper, we present a novel block-based coding solution
for DNA data storage. We then integrate it in different image
codecs for synthetic DNA data storage, all inspired by the
legacy JPEG algorithm.

In section II we introduce some concepts around DNA
data storage as well as the existing JPEG-inspired codecs
proposed to address this new field of research. Section III
explains the interest of further robustifying entropy coders
against sequencing errors. The proposed block-based coding
scheme is then explained while proving it does not deteriorate

the compression of the original method. The coding scheme is
then integrated into some existing JPEG-based image codecs
presented in section II. Finally, in section IV-B and IV-C the
paper shows performance results. We experimentally show that
the modified codecs don’t loose any performance in compres-
sion, and statistically analyse the quality of the encoded data
with regards to the DNA coding constraints. The modified
codecs have a better GC-content than the original ones and
the long homopolymers have been removed from the generated
oligos.

II. CONTEXT

A. DNA data storage

Today, the digital world relies on increasingly large
amounts of data, stored over periods of time ranging from
a few years to several centuries. With current storage media
reaching its density limit and the exponential growth of digital
information, the search for a new storage paradigm has become
of utmost importance. One of the most promising candidates
up to this date is to store information in the form of DNA
molecules, which provide very dense storage (1 EB/mm3)
that is also stable over long periods if stored under the right
conditions [4].

The process of DNA data storage starts by encoding data
into a quaternary stream composed by the four DNA symbols
or nucleotides (A, C, T, and G). The encoded data is then
physically synthesised into DNA strands (oligos) that are then
stored into a safe environment. When data has to be read back,
the stored molecules are amplified so as to obtain many copies
of each original sequence and the content is deciphered using
DNA sequencers. This data is then decoded back into the form
of the original binary file. However, the biochemical processes
involved in the above end-to-end storage process introduce
some coding constraints [1] that, if not respected, dramatically
increase the probability of an error occurring (insertion, dele-
tion and/or substitution). These constraints comprise avoiding
homopolymers (i.e. use of the same symbol more than 3
consecutive times), repetition of patterns and unbalanced GC
content.

Algorithms specifically designed for DNA data storage
which respect the biochemical constraints generally show
better reliability [2]. Although constrained coding helps re-
ducing the apparition of errors, it does not ensure an error
free coding. To tackle the problems of errors, an important
number of researchers [5], [6], [7] are currently studying
the development of accurate error models for synthetic DNA979-8-3503-3959-8/23/$31.00 ©2023 IEEE



Fig. 1. Workflow of a JPEG-inspired codec [8], [9]

data storage. Furthermore, since the cost of DNA synthesis is
relatively high, it is also important to take advantage of optimal
compression, which can be achieved before synthesizing the
sequence into DNA. To decrease the synthesis cost of image
storage into DNA, several works have been using the so-called
“transcoding” method which is based on classical compression
protocols such as JPEG for reducing the image redundancies,
then encoding each byte of the produced bitstream into DNA
words. However, it is clear that such a compression schema is
sub-optimal as the compression is optimised with respect to a
binary code and therefore it is not adapted to the quaternary
nature of DNA. To tackle the above issue, among other relevant
works, in [8] the authors proposed a specific image coding
algorithm, adapted to the needs of DNA data storage, that
efficiently encodes images into a quaternary constrained code.

B. JPEG-inspired coding methods

All the JPEG-inspired coding methods described here are
based on [8], whose workflow is described in Fig. 1.

1) Principle: The main principle of these coders is to
encode a sequence of DCT coefficients into DNA using a
combination of an entropy and a fixed-length constrained
coder. The coders are constrained so as to be as compliant
as possible with regards to the biochemical constraints. The
run/category is encoded with the entropy coder and the value
with the fixed-length coder (see [8]).

2) Entropy coders: Entropy coding methods are variable-
length lossless coding methods which encode the source data
thanks to a code — a set of codewords — generated from
a frequency table representing the number of appearances of
every symbol in the source. The length of the codewords
representing every symbol varies according to the probability
of their appearance: frequently appearing symbols are asso-
ciated to shorted codewords while the less frequent ones are
assigned to longer codewords. There are two possible entropy
coders that can be used to encode the run/category of the
coefficients: Huffman/Goldman [2] and the Shannon Fano
based constrained coder we proposed in [10]. The latter is
more performant in terms of compression rate.

3) Source type: When one encodes an image into DNA
with a JPEG-inspired algorithm, there are two possibilities.
If the input of the algorithm is a raw image, the algorithm
computes the DCT coefficients and then encodes them [8]
into DNA. This encoding paradigm is called source coding.
Otherwise, the input of the coding algorithm can be an already
compressed JPEG binary file. In this case, the bitstream is

decoded to obtain the sequence of DCT coefficients that will
then be encoded into DNA [11]. We will refer to this paradigm
as transcoding.

III. CODING SOLUTION

A. Motivation

The principle of the novel coding solution is to avoid
using the same code — set of codewords — consecutively
to avoid creating patterns or homopolymers. In the case where
a symbol is very frequently found in the source, due to its high
probability, the entropy coder will associate a short codeword
to it, which in extreme cases can lead to a codeword consisting
of one nucleotide. If this symbol is repeated consecutively in
the source, it will create a homopolymer. Figure 3 represents
this case. If the symbol is a bit less frequent, the entropy
coder will associate a codeword of length two or three to
this symbol, and when a repetition of this symbol will occur,
a short pattern will be created, also violating the defined
biochemical constraints. A real example of these phenomenon
can be found when encoding images into DNA with a JPEG-
inspired algorithm at very high compression rates, like shown
in Fig.2.

B. Principle

In order to avoid these homopolymers and repetitions of
patterns, we propose to introduce variability in the generated
quaternary streams by generating several equally peformant
codes and alternating between them during encoding. Thus,
since the symbols will not always be associated to the same
codewords, we reduce the risk of creating homopolymers when
very frequent symbols are heavily repeated in the source.

An entropic code C is mapped to three associated entropic
codes C∗

1 , C∗
2 and C∗

3 , with three mapping functions M1, M2

and M3 described in Algorithms 1 and 2 and defined as: ∀k ∈
[1, 3],

Mk : C → C∗
k

c 7→ c∗k = switchLetters(c, k)

The code used to encode the symbols can be changed peri-
odically. When the source is a simple sequence of symbols
(i.e. non block-based), one can change the code after having
encoded a fixed amount of symbols, for example every six
symbols like the solution presented in Fig. 4.

This novel encoding method relies on two important pro-
cesses that will be further explained in the following sections:
the generation of the different codes that can be used to encode
the symbols, and the decision of which code to use. Both
processes have to respect some prerequisites to make the whole
encoding method a viable solution. First, the proposed coding
method will improve the robustness of the encoding through
tougher consideration of the biochemical constraints, without
affecting the compression performance of the original coder.
To ensure decodability, this decision has to be deterministic,
otherwise, additional data would have to be transmitted to
make sure the decoder can decode the data.

Overall, the proposed solution is very well adapted to
block-based encoding methods like for example JPEG-inspired
algorithms. More specifically in this work, codes are rotated
after encoding a block. The order of encoding of the blocks is



Fig. 2. Problematic encoding cases in JPEG-inspired codecs: example of homopolymers created at high compression rates.

Fig. 3. Problematic case for an entropy coder. In red, a homopolymer caused
by the repetition of a very frequent symbol in the source.

Fig. 4. Encoding example using rotating codes to avoid homopolymers. The
code is changed every six symbols.

organized one line of blocks after another. In addition, to avoid
error propagation, the code decision process is reinitialised
after the encoding of a full line of blocks as shown in Fig.
5.
C. Codes construction

The codes construction process is described in Algorithms
1 and 2. The general idea is based on using an already existing
codec and the associated quaternary code. From this pre-
defined code, we will build three associated codes by mapping
all the nucleotides in the original codewords to new ones
according to a mapping rule as described in Algorithm 2. The

results of the construction algorithm is a list of four codes that
can be used in the novel solution. As proven by Proposition 1,
the performance of the resulting coding solution is not affected
by the introduction of the new coding method in comparison
to the original coder.

Algorithm 1 GenerateCodes(InputCode): Create all the
possible codes.
Codes← EmptyList(4)
Codes[0]← InputCode
for i← 2 to length(Codes) do
Codes[i]← EmptyList(length(InputCode))
for j ← 1 to length(InputCode) do

Codes[i][j] = switchLetters(Code[j], i)
end for

end for
return Codes

Algorithm 2 switchLetters(codeword, k): Offset the letters
of a codeword
Mapping ← [′A′,′ T ′,′ C ′,′ G′]
for i← 1 to length(codeword) do
idx← index(codeword[i],mapping)
codeword[i]← mapping[(i+ k) mod 4]

end for
return codeword

Definitions.

• S the source of length n
• Σ the source S alphabet, S ∈ Σn

• ΣDNA the set {A, T,C,G} of nucleotides
• C the original quaternary coder used to encode S

• D = {Cx ∈ Σk
DNA,∀x ∈ Σ} the code of C

• CR the novel quaternary coder
• DR = {CRx ∈ Σk

DNA,∀x ∈ Σ} the code of CR

Proposition 1.
Length(C(S)) = Length(CR(S)),
C and CR have the same compression rate.

Proof.

Length(C(S)) =
∑Length(S)

i=1 Length(D[S[i]])

Length(CR(S)) =
∑Length(S)

i=1 Length(DR[S[i]])

Trivially, ∀x ∈ Σ, Length(D[x])) = Length(DR[x])
⇒ Length(C(S)) = Length(CR(S))

D. Code choice

For the proposed coding solution, it is possible to choose
between four codes to encode a fragment of the source. We
propose two possible decision processes to determine the order



(a) Simple rotation (b) Pseudo-random rotation
Fig. 5. Examples of rotation schemes on a block-based image coder. Here,
the blocks colored in red are encoded with C, in green by C∗

1 , in blue by C∗
2

and in yellow by C∗
3 .

in which the different codes will be used. The first possible
case is very simple: we iterate through the four possible codes
one by one, and start over. The second possible decision
process is a pseudo-random choice, where the encoder and the
decoder have a common seed for the pseudo-random generator.
Introducing variability in the coding methods will result in
a less structured quaternary stream, which is beneficial for
our encoding process (less patterns and homopolymers, more
balanced data for the GC content).

E. Integration in a block-based coder

In the case of block-based coders like the JPEG-inspired
codecs, we can change the selected code every time we encode
a new block. When the input of the block-based codec is an
image, we can reduce the propagation of errors by reinitializing
the decision process every time we start to encode a new line
of blocks. Fig. 5 represents possible rotation schemes for a
block-based image coding method. Every color represents the
choice of a different code.

F. About the fixed-length coders

An important question to address about the proposed coder
is why would we limit its usage only to variable-length coders.
For example, the JPEG-inspired codecs don’t exclusively use
a variable-length coder, they also use a fixed-length coder.
Ideally, using this method on any type of coder would improve
the quality of the quaternary stream. But since a fixed-length
coder is source independent, it can be pre-generated in a way
to consider the constraints much more thoroughly. In such
codes, specific codewords can be eliminated being considered
as slightly problematic. If we rotated the letters similarly
to variable-length coders, such problematic codewords would
sometimes be created, losing all the quality gathered in this
pre-generated code.

IV. PERFORMANCE RESULTS

A. Nomenclature

For clarity, in the following sub-sections, the different
methods will be named in the following logic:
JPEGDNA-${entropy coder id}-${source id}[-${rotation id}]

The entropy coder id can be HG if the method uses the
Huffman/Goldman coder or SFC4 if it uses the Shannon Fano
Constrained coder. The source id can be S when the source is a
raw image, or T when it is a already JPEG compressed binary
file. For example, JPEGDNA-HG-S is the codec that encodes

(a) JPEG-HG-S (b) JPEG-HG-T
Fig. 6. Performance comparison of the original algorithms and their novel
modifications for two coding algorithms (JPEG-HG-S and JPEG-HG-T) on
kodim01. The blue, yellow and red curves are superimposed.

a raw image where the Huffman/Goldman coder encodes the
run/category. The rotation id is optionnal and can be either R or
RR. The first describes a regular rotation scheme and the latter
a pseudo-random rotation. Both rotations will be described
in III-D. For example, the codec JPEG-DNA-HG-S-R is the
equivalent of the latter but with a rotative labelling on the
Huffman/Goldman coder.

B. Compression performance

As previously shown in subsection III-C, the introduction
of the new coding method does not have any effect on the
coding performance in comparison to the original method.
However, this property has only been proven specifically for
the rotating codes, and not for the codecs in which this new
method is integrated. But since we only modify the variable-
length coder and not the rest of the compressed stream in
those JPEG-inspired coding methods, the compression rate
of the general coding algorithm remains the same. The rate-
distorsion curves in Fig. 6 illustrate this: the curves for the
original algorithms and the modified ones are superimposed.
The performance results shown in Fig. 6 have been computed
on the first image of the Kodak dataset1, kodim01.

C. Oligo quality assessment

1) Approach: Respecting the biochemical constraints of
DNA data storage is crucial for the end-to-end storage. This is
reflected in Fig. 2, where, due to the apparition of very long
homopolymers, the obtained oligos are unusable. In compari-
son, the same oligos obtained for the same compression rate
with the modified method of the algorithm, shown in Fig. 7
are much more acceptable from the biochemical perspective.
Since a visual verification is not enough to assess the quality of
the generated oligos, we further introduce some oligo quality
analysis and visualization tools that were, to our knowledge,
lacking in the field of DNA data storage.

2) Software for quality assessment: The proposed analysis
and visualization tools are available in a public repository2.
These tools inlude general statistics about the coded data
(number of homopolymer in the oligo pool, average size of
the homopolymers, average GC content, proportion of oligos
with problematic GC content) as well as histograms describing
with more details the ill cases. To our knowledge, in past
research [7] , gathering statistics to measure the quality of

1https://r0k.us/graphics/kodak/
2https://github.com/jpegdna-mediacoding/OligoAnalyzer



Fig. 7. Result after rotating the variable-length code. This oligo and the one in Fig. 2 represent exactly the same data, and in comparison to Fig. 2, homopolymers
have disappeared.

Fig. 8. Distribution of the generated oligos when encoding kodim01 at
30 bits/nt in function of their GC content. The novel methods don’t have
problematic oligos (above 60% of GC).

oligos have never been presented in depth, especially for the
case of homopolymers.

3) GC content: The distribution of the GC content of the
oligos has been evaluated. We consider all the oligos with
a GC content below 30% or above 60% to be problematic.
In these regards, as presented in Fig. 8, the novel methods
(JPEGDNA-HG-S-R, JPEGDNA-HG-S-RR, JPEGDNA-HG-
T-R, JPEGDNA-HG-T-RR) show great improvement over the
original ones.

4) Homopolymers: For every oligo, we have computed the
average length of homopolymer runs. At high compression
rates, the homopolymer length deteriorates quickly and some
oligos have homopolymers of a size greater than ten, which
is extremely problematic, as shown in Fig. 9. Even though
the novel methods still produce some homopolymers, their
average size per oligo does not exceed the length of five
nucleotides, which is a very important gain for the robustness
of the decoded result. Moreover, the number of homopolymers
and their average size over the whole oligo pool also decreased
as shown in Table I, where N is the number of homopolymers
in the data, Avg the average size of the homopolymers and
Max the maximum size of the homopolymers. The pseudo-
random rotation slightly underperforms in terms of length
of homopolymer runs in the compressed data. This is due
to the fact that in some cases, the code decision process
will pick the same code several times in a row, allowing
the apparition of more homopolymers. The SFC4-based [10]
coders also underperform, since they were designed to relax the
homopolymer constraint in comparison to Huffman/Goldman.

TABLE I. HOMOPOLYMERS IN THE OLIGOS WHEN ENCODING
KODIM01 AT 30 BITS/NT

HG-S HG-S-R HG-S-RR SFC4-S SFC4-S-R SFC4-S-RR
N 756 64 291 939 411 644

Avg 10.68 4.11 4.14 9.38 4.18 4.20
Max 67 5 5 57 6 7

V. CONCLUSION

In this paper, we have proposed a novel coding method
adapted to DNA data storage that introduces variability in the
generated quaternary streams. The main asset of the proposed
encoding algorithm lies in its ability to tackle some of the
challenges that are met when designing coders for DNA data
storage, namely the respect of biochemical constraints. Results

Fig. 9. Distribition of the average homopolymer size per oligo when encoding
kodim01 at 30 bits/nt. The novel methods don’t have oligos with very long
homopolymers.

show that the generated oligos contain less homopolymer
runs while the remaining ones present a greatly reduced size.
Moreover, results show improvements on the GC content,
limiting it between 30% and 60%. The improvements were
more significant at lower bit-rates, where the original cod-
ing algorithms severely underperformed with regards to the
biochemical constraints. Additionally, thanks to its design,
integrating the proposed coding solution in block-based image
codecs does not affect the compression rate of the original
solution.
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